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Abstract

IMPORTANCE Deep learning has the potential to augment clinician performance in medical imaging
interpretation and reduce time to diagnosis through automated segmentation. Few studies to date
have explored this topic.

OBJECTIVE To develop and apply a neural network segmentation model (the HeadXNet model)
capable of generating precise voxel-by-voxel predictions of intracranial aneurysms on head
computed tomographic angiography (CTA) imaging to augment clinicians’ intracranial aneurysm
diagnostic performance.

DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, a 3-dimensional convolutional
neural network architecture was developed using a training set of 611 head CTA examinations to
generate aneurysm segmentations. Segmentation outputs from this support model on a test set of
115 examinations were provided to clinicians. Between August 13, 2018, and October 4, 2018, 8
clinicians diagnosed the presence of aneurysm on the test set, both with and without model
augmentation, in a crossover design using randomized order and a 14-day washout period. Head and
neck examinations performed between January 3, 2003, and May 31, 2017, at a single academic
medical center were used to train, validate, and test the model. Examinations positive for aneurysm
had at least 1 clinically significant, nonruptured intracranial aneurysm. Examinations with
hemorrhage, ruptured aneurysm, posttraumatic or infectious pseudoaneurysm, arteriovenous
malformation, surgical clips, coils, catheters, or other surgical hardware were excluded. All other CTA
examinations were considered controls.

MAIN OUTCOMES AND MEASURES Sensitivity, specificity, accuracy, time, and interrater
agreement were measured. Metrics for clinician performance with and without model augmentation
were compared.

RESULTS The data set contained 818 examinations from 662 unique patients with 328 CTA
examinations (40.1%) containing at least 1 intracranial aneurysm and 490 examinations (59.9%)
without intracranial aneurysms. The 8 clinicians reading the test set ranged in experience from 2 to
12 years. Augmenting clinicians with artificial intelligence–produced segmentation predictions
resulted in clinicians achieving statistically significant improvements in sensitivity, accuracy, and
interrater agreement when compared with no augmentation. The clinicians’ mean sensitivity
increased by 0.059 (95% CI, 0.028-0.091; adjusted P = .01), mean accuracy increased by 0.038
(95% CI, 0.014-0.062; adjusted P = .02), and mean interrater agreement (Fleiss κ) increased by
0.060, from 0.799 to 0.859 (adjusted P = .05). There was no statistically significant change in mean
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Abstract (continued)

specificity (0.016; 95% CI, −0.010 to 0.041; adjusted P = .16) and time to diagnosis (5.71 seconds;
95% CI, 7.22-18.63 seconds; adjusted P = .19).

CONCLUSIONS AND RELEVANCE The deep learning model developed successfully detected
clinically significant intracranial aneurysms on CTA. This suggests that integration of an artificial
intelligence–assisted diagnostic model may augment clinician performance with dependable and
accurate predictions and thereby optimize patient care.

JAMA Network Open. 2019;2(6):e195600. doi:10.1001/jamanetworkopen.2019.5600

Introduction

Diagnosis of unruptured aneurysms is a critically important clinical task: intracranial aneurysms occur
in 1% to 3% of the population and account for more than 80% of nontraumatic life-threatening
subarachnoid hemorrhages.1 Computed tomographic angiography (CTA) is the primary, minimally
invasive imaging modality currently used for diagnosis, surveillance, and presurgical planning of
intracranial aneurysms,2,3 but interpretation is time consuming even for subspecialty-trained
neuroradiologists. Low interrater agreement poses an additional challenge for reliable diagnosis.4-7

Deep learning has recently shown significant potential in accurately performing diagnostic tasks
on medical imaging.8 Specifically, convolutional neural networks (CNNs) have demonstrated
excellent performance on a range of visual tasks, including medical image analysis.9 Moreover, the
ability of deep learning systems to augment clinician workflow remains relatively unexplored.10 The
development of an accurate deep learning model to help clinicians reliably identify clinically
significant aneurysms in CTA has the potential to provide radiologists, neurosurgeons, and other
clinicians an easily accessible and immediately applicable diagnostic support tool.

In this study, a deep learning model to automatically detect intracranial aneurysms on CTA and
produce segmentations specifying regions of interest was developed to assist clinicians in the
interpretation of CTA examinations for the diagnosis of intracranial aneurysms. Sensitivity, specificity,
accuracy, time to diagnosis, and interrater agreement for clinicians with and without model
augmentation were compared.

Methods

The Stanford University institutional review board approved this study. Owing to the retrospective
nature of the study, patient consent or assent was waived. The Standards for Reporting of Diagnostic
Accuracy (STARD) reporting guideline was used for the reporting of this study.

Data
A total of 9455 consecutive CTA examination reports of the head or head and neck performed
between January 3, 2003, and May 31, 2017, at Stanford University Medical Center were
retrospectively reviewed. Examinations with parenchymal hemorrhage, subarachnoid hemorrhage,
posttraumatic or infectious pseudoaneurysm, arteriovenous malformation, ischemic stroke,
nonspecific or chronic vascular findings such as intracranial atherosclerosis or other vasculopathies,
surgical clips, coils, catheters, or other surgical hardware were excluded. Examinations of injuries that
resulted from trauma or contained images degraded by motion were also excluded on visual review
by a board-certified neuroradiologist with 12 years of experience. Examinations with nonruptured
clinically significant aneurysms (>3 mm) were included.11
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Radiologist Annotations
The reference standard for all examinations in the test set was determined by a board-certified
neuroradiologist at a large academic practice with 12 years of experience who determined the
presence of aneurysm by review of the original radiology report, double review of the CTA
examination, and further confirmation of the aneurysm by diagnostic cerebral angiograms, if
available. The neuroradiologist had access to all of the Digital Imaging and Communications in
Medicine (DICOM) series, original reports, and clinical histories, as well as previous and follow-up
examinations during interpretation to establish the best possible reference standard for the labels.
For each of the aneurysm examinations, the radiologist also identified the location of each of the
aneurysms. Using the open-source annotation software ITK-SNAP,12 the identified aneurysms were
manually segmented on each slice.

Model Development
In this study, we developed a 3-dimensional (3-D) CNN called HeadXNet for segmentation of
intracranial aneurysms from CT scans. Neural networks are functions with parameters structured as
a sequence of layers to learn different levels of abstraction. Convolutional neural networks are a type
of neural network designed to process image data, and 3-D CNNs are particularly well suited to
handle sequences of images, or volumes.

HeadXNet is a CNN with an encoder-decoder structure (eFigure 1 in the Supplement), where the
encoder maps a volume to an abstract low-resolution encoding, and the decoder expands this
encoding to a full-resolution segmentation volume. The segmentation volume is of the same size as
the corresponding study and specifies the probability of aneurysm for each voxel, which is the atomic
unit of a 3-D volume, analogous to a pixel in a 2-D image. The encoder is adapted from a 50-layer
SE-ResNeXt network,13-15 and the decoder is a sequence of 3 × 3 transposed convolutions. Similar to
UNet,16 skip connections are used in 3 layers of the encoder to transmit outputs directly to the
decoder. The encoder was pretrained on the Kinetics-600 data set,17 a large collection of YouTube
videos labeled with human actions; after pretraining the encoder, the final 3 convolutional blocks and
the 600-way softmax output layer were removed. In their place, an atrous spatial pyramid pooling18

layer and the decoder were added.

Training Procedure
Subvolumes of 16 slices were randomly sampled from volumes during training. The data set was
preprocessed to find contours of the skull, and each volume was cropped around the skull in the axial
plane before resizing each slice to 208 × 208 pixels. The slices were then cropped to 192 × 192 pixels
(using random crops during training and centered crops during testing), resulting in a final input of
size 16 × 192 × 192 per example; the same transformations were applied to the segmentation label.
The segmentation output was trained to optimize a weighted combination of the voxelwise binary
cross-entropy and Dice losses.19

Before reaching the model, inputs were clipped to [−300, 700] Hounsfield units, normalized to
[−1, 1], and zero-centered. The model was trained on 3 Titan Xp graphical processing units (GPUs)
(NVIDIA) using a minibatch of 2 examples per GPU. The parameters of the model were optimized
using a stochastic gradient descent optimizer with momentum of 0.9 and a peak learning rate of 0.1
for randomly initialized weights and 0.01 for pretrained weights. The learning rate was scheduled
with a linear warm-up from 0 to the peak learning rate for 10 000 iterations, followed by cosine
annealing20 over 300 000 iterations. Additionally, the learning rate was fixed at 0 for the first
10 000 iterations for the pretrained encoder. For regularization, L2 weight decay of 0.001 was added
to the loss for all trainable parameters and stochastic depth dropout21 was used in the encoder
blocks. Standard dropout was not used.

To control for class imbalance, 3 methods were used. First, an auxiliary loss was added after the
encoder and focal loss was used to encourage larger parameter updates on misclassified positive
examples. Second, abnormal training examples were sampled more frequently than normal
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examples such that abnormal examples made up 30% of training iterations. Third, parameters of the
decoder were not updated on training iterations where the segmentation label consisted of purely
background (normal) voxels.

To produce a segmentation prediction for the entire volume, the segmentation outputs for
sequential 16-slice subvolumes were simply concatenated. If the number of slices was not divisible by
16, the last input volume was padded with 0s and the corresponding output volume was truncated
back to the original size.

Study Design
We performed a diagnostic accuracy study comparing performance metrics of clinicians with and
without model augmentation. Each of the 8 clinicians participating in the study diagnosed a test set
of 115 examinations, once with and once without assistance of the model. The clinicians were blinded
to the original reports, clinical histories, and follow-up imaging examinations. Using a crossover
design, the clinicians were randomly and equally divided into 2 groups. Within each group,
examinations were sorted in a fixed random order for half of the group and sorted in reverse order for
the other half. Group 1 first read the examinations without model augmentation, and group 2 first
read the examinations with model augmentation. After a washout period of 14 days, the
augmentation arrangement was reversed such that group 1 performed reads with model
augmentation and group 2 read the examinations without model augmentation (Figure 1A).

Clinicians were instructed to assign a binary label for the presence or absence of at least 1
clinically significant aneurysm, defined as having a diameter greater than 3 mm. Clinicians read alone
in a diagnostic reading room, all using the same high-definition monitor (3840 × 2160 pixels)
displaying CTA examinations on a standard open-source DICOM viewer (Horos).22 Clinicians entered

Figure 1. Study Design

Original CTA scan (unaugmented read)B

Crossover study designA

Model segmentation overlay (AI-augmented read)C

8 Clinicians

Unaugmented read

AI-augmented read Unaugmented read

Unaugmented CTA aneurysm interpretation

AI-augmented readWashout
period

Washout
period

AI-augmented CTA aneurysm interpretation

5 Clinicians
3 Radiologists
1 Neurosurgeon, 1 Resident

3 Clinicians
3 Radiologists

A, Crossover study design. Clinicians were divided into 2 groups to perform reads with
and without model augmentation in random order, with a 2-week washout period
between. B, Unaugmented read, with original CTA scan in axial, coronal, and sagittal

view. C, Augmented read, with model segmentation overlay on CTA in axial, coronal, and
sagittal view. Readers had the option to toggle overlays off and view the scan as shown
in B. AI indicates artificial intelligence; CTA, computed tomographic angiography.
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their labels into a data entry software application that automatically logged the time difference
between labeling of the previous examination and the current examination.

When reading with model augmentation, clinicians were provided the model’s predictions in
the form of region of interest (ROI) segmentations directly overlaid on top of CTA examinations. To
ensure an image display interface that was familiar to all clinicians, the model’s predictions were
presented as ROIs in a standard DICOM viewing software. At every voxel where the model predicted
a probability greater than 0.5, readers saw a semiopaque red overlay on the axial, sagittal, and
coronal series (Figure 1C). Readers had access to the ROIs immediately on loading the examinations,
and the ROIs could be toggled off to reveal the unaltered CTA images (Figure 1B). The red overlays
were the only indication that was given whether a particular CTA examination had been predicted by
the model to contain an aneurysm. Given these model results, readers had the option to take it into
consideration or disregard it based on clinical judgment. When readers performed diagnoses without
augmentation, no ROIs were present on any of the examinations. Otherwise, the diagnostic tools
were identical for augmented and nonaugmented reads.

Statistical Analysis
On the binary task of determining whether an examination contained an aneurysm, sensitivity,
specificity, and accuracy were used to assess the performance of clinicians with and without model
augmentation. Sensitivity denotes the number of true-positive results over total aneurysm-positive
cases, specificity denotes the number of true-negative results over total aneurysm-negative cases,
and accuracy denotes the number of true-positive and true-negative results over all test cases. The
microaverage of these statistics across all clinicians was also computed by measuring each statistic
pertaining to the total number of true-positive, false-negative, and false-positive results. In addition,
to convert the models’ segmentation output of the model into a binary prediction, a prediction was
considered positive if the model predicted at least 1 voxel as belonging to an aneurysm and negative
otherwise. The 95% Wilson score confidence intervals were used to assess the variability in the
estimates for sensitivity, specificity, and accuracy.23

To assess whether the clinicians achieved significant increases in performance with model
augmentation, a 1-tailed t test was performed on the differences in sensitivity, specificity, and
accuracy across all 8 clinicians. To determine the robustness of the findings and whether results were
due to inclusion of the resident radiologist and neurosurgeon, we performed a sensitivity analysis:
we computed the t test on the differences in sensitivity, specificity, and accuracy across board-
certified radiologists only.

The average time to diagnosis for the clinicians with and without augmentation was computed
as the difference between the mean entry times into the spreadsheet of consecutive diagnoses; 95%
t score confidence intervals were used to assess the variability in the estimates. To account for
interruptions in the clinical read or time logging errors, the 5 longest and 5 shortest time to diagnosis
for each clinician in each reading were excluded. To assess whether model augmentation significantly
decreased the time to diagnosis, a 1-tailed t test was performed on the difference in average time
with and without augmentation across all 8 clinicians.

The interrater agreement of clinicians and for the radiologist subset was computed using the
exact Fleiss κ.24 To assess whether model augmentation increased interrater agreement, a 1-tailed
permutation test was performed on the difference between the interrater agreement of clinicians on
the test set with and without augmentation. The permutation procedure consisted of randomly
swapping clinician annotations with and without augmentation so that a random subset of the test
set that had previously been labeled as read with augmentation was now labeled as being read
without augmentation, and vice versa; the exact Fleiss κ values (and the difference) were computed
on the test set with permuted labels. This permutation procedure was repeated 10 000 times to
generate the null distribution of the Fleiss κ difference (the interrater agreement of clinician
annotations with augmentation is not higher than without augmentation) and the unadjusted P value
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calculated as the proportion of Fleiss κ differences that were higher than the observed Fleiss κ
difference.

To control the familywise error rate, the Benjamini-Hochberg correction was applied to account
for multiple hypothesis testing; a Benjamini-Hochberg–adjusted P � .05 indicated statistical
significance. All tests were 1-tailed.25

Results

The data set contained 818 examinations from 662 unique patients with 328 CTA examinations
(40.1%) containing at least 1 intracranial aneurysm and 490 examinations (59.9%) without
intracranial aneurysms (Figure 2). Of the 328 aneurysm cases, 20 cases from 15 unique patients
contained 2 or more aneurysms. One hundred forty-eight aneurysm cases contained aneurysms
between 3 mm and 7 mm, 108 cases had aneurysms between 7 mm and 12 mm, 61 cases had
aneurysms between 12 mm and 24 mm, and 11 cases had aneurysms 24 mm or greater. The location
of the aneurysms varied according to the following distribution: 99 were located in the internal
carotid artery, 78 were in the middle cerebral artery, 50 were cavernous internal carotid artery
aneurysms, 44 were basilar tip aneurysms, 41 were in the anterior communicating artery, 18 were in
the posterior communicating artery, 16 were in the vertebrobasilar system, and 12 were in the
anterior cerebral artery. All examinations were performed either on a GE Discovery, GE LightSpeed,
GE Revolution, Siemens Definition, Siemens Sensation, or a Siemens Force scanner, with slice
thicknesses of 1.0 mm or 1.25 mm, using standard clinical protocols for head angiogram or head/neck
angiogram. There was no difference between the protocols or slice thicknesses between the
aneurysm and nonaneurysm examinations. For this study, axial series were extracted from each
examination and a segmentation label was produced on every axial slice containing an aneurysm. The
number of images per examination ranged from 113 to 802 (mean [SD], 373 [157]).

The examinations were split into a training set of 611 examinations (494 patients; mean [SD]
age, 55.8 [18.1] years; 372 [60.9%] female) used to train the model, a development set of 92
examinations (86 patients; mean [SD] age, 61.6 [16.7] years; 59 [64.1%] female) used for model
selection, and a test set of 115 examinations (82 patients; mean [SD] age, 57.8 [18.3] years; 74
[64.4%] female) to evaluate the performance of the clinicians when augmented with the model
(Figure 2). Using stratified random sampling, the development and test sets were formed to include

Figure 2. Data Set Selection Flow Diagram and Patient Demographics

9455 CTA scans assessed for eligibility

8637 Excluded (validated by board-certified neuroradiologist)

46 Trauma cases
1841 Slice thickness other than 1.0 mm or 1.25 mm

212 Containing only clinically insignificant aneurysm
4908 Nonspecific or chronic vascular findings or

degraded by motion or poor diagnostic quality

804 Subarachnoid hemorrhage
115 Parenchymal hemorrhage
500 Surgical hardware
140 Arteriovenous malformation

66 Ischemic stroke
5 Posttraumatic or infectious pseudoaneurysm

818 Eligible CTA scans
328 Aneurysm
490 Normal

611 CTA scans
223 Aneurysm
388 Normal

Training set
92 CTA scans

46 Aneurysm
46 Normal

Development set
115 CTA scans

59 Aneurysm
56 Normal

Test set

Of 9455 computed tomography angiogram (CTA)
examinations performed between 2003 and 2017 at
Stanford University Medical Center, 818 were selected
according to an exclusion criteria validated by a
board-certified neuroradiologist. These examinations
were split into the training set, development set, and
test set to be used for training models, selecting the
best model, and assessing the selected model,
respectively.
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50% aneurysm examinations and 50% normal examinations; the remaining examinations composed
the training set, of which 36.5% were aneurysm examinations. Forty-three patients had multiple
examinations in the data set due to examinations performed for follow-up of the aneurysm. To
account for these repeat patients, examinations were split so that there was no patient overlap
between the different sets. Figure 2 contains pathology and patient demographic characteristics for
each set.

A total of 8 clinicians, including 6 board-certified practicing radiologists, 1 practicing
neurosurgeon, and 1 radiology resident, participated as readers in the study. The radiologists’ years
of experience ranged from 3 to 12 years, the neurosurgeon had 2 years of experience as attending,
and the resident was in the second year of training at Stanford University Medical Center. Groups 1
and 2 consisted of 3 radiologists each; the resident and neurosurgeon were both in group 1. None of
the clinicians were involved in establishing the reference standard for the examinations.

Without augmentation, clinicians achieved a microaveraged sensitivity of 0.831 (95% CI,
0.794-0.862), specificity of 0.960 (95% CI, 0.937-0.974), and an accuracy of 0.893 (95% CI, 0.872-
0.912). With augmentation, the clinicians achieved a microaveraged sensitivity of 0.890 (95% CI,
0.858-0.915), specificity of 0.975 (95% CI, 0.957-0.986), and an accuracy of 0.932 (95% CI, 0.913-
0.946). The underlying model had a sensitivity of 0.949 (95% CI, 0.861-0.983), specificity of 0.661
(95% CI, 0.530-0.771), and accuracy of 0.809 (95% CI, 0.727-0.870). The performances of the
model, individual clinicians, and their microaverages are reported in eTable 1 in the Supplement.

With augmentation, there was a statistically significant increase in the mean sensitivity (0.059;
95% CI, 0.028-0.091; adjusted P = .01) and mean accuracy (0.038; 95% CI, 0.014-0.062; adjusted
P = .02) of the clinicians as a group. There was no statistically significant change in mean specificity
(0.016; 95% CI, −0.010 to 0.041; adjusted P = .16). Performance improvements across clinicians are
detailed in the Table, and individual clinician improvement in Figure 3. Individual performances with
and without model augmentation are shown in eTable 1 in the Supplement. The sensitivity analysis
confirmed that even among board-certified radiologists, there was a statistically significant increase

Table. Clinician Performance Metrics With and Without Augmentation

Metric

Microaverage (95% CI)

Mean Increase (95% CI)

P Value

Without Augmentation With Augmentation Unadjusted Adjusteda

Sensitivity 0.831 (0.794 to 0.862) 0.890 (0.858 to 0.915) 0.059 (0.028 to 0.091) .001 .01

Specificity 0.960 (0.937 to 0.974) 0.975 (0.957 to 0.986) 0.016 (−0.010 to 0.041) .10 .16

Accuracy 0.893 (0.782 to 0.912) 0.932 (0.913 to 0.946) 0.038 (0.014 to 0.062) .004 .02
a P values were adjusted for multiple hypothesis testing using the Benjamini-Hochberg correction.

Figure 3. Change in Individual Clinicians' Performance Metric
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Horizontal lines depict the change in performance metric for each clinician with and without model augmentation. The orange dot represents performance without model, and the
blue dot represents performance with model augmentation.

JAMA Network Open | Health Informatics Deep Learning–Assisted Diagnosis of Cerebral Aneurysms From CT Angiograms

JAMA Network Open. 2019;2(6):e195600. doi:10.1001/jamanetworkopen.2019.5600 (Reprinted) June 7, 2019 7/12

Downloaded From: https://jamanetwork.com/ on 06/08/2019

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2019.5600&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.5600
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2019.5600&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.5600


in mean sensitivity (0.059; 95% CI, 0.013-0.105; adjusted P = .04) and accuracy (0.036; 95% CI,
0.001-0.072; adjusted P = .05). Performance improvements of board-certified radiologists as a
group are shown in eTable 2 in the Supplement.

The mean diagnosis time per examination without augmentation microaveraged across
clinicians was 57.04 seconds (95% CI, 54.58-59.50 seconds). The times for individual clinicians are
detailed in eTable 3 in the Supplement, and individual time changes are shown in eFigure 2 in the
Supplement. With augmentation, there was no statistically significant decrease in mean diagnosis
time (5.71 seconds; 95% CI, −7.22 to 18.63 seconds; adjusted P = .19). The model took a mean of 7.58
seconds (95% CI, 6.92-8.25 seconds) to process an examination and output its segmentation map.

Confusion matrices, which are tables reporting true- and false-positive results and true- and
false-negative results of each clinician with and without model augmentation, are shown in eTable 4
in the Supplement.

There was a statistically significant increase of 0.060 (adjusted P = .05) in the interrater
agreement among the clinicians, with an exact Fleiss κ of 0.799 without augmentation and 0.859
with augmentation. For the board-certified radiologists, there was an increase of 0.063 in their
interrater agreement, with an exact Fleiss κ of 0.783 without augmentation and 0.847 with
augmentation.

Discussion

In this study, the ability of a deep learning model to augment clinician performance in detecting
cerebral aneurysms using CTA was investigated with a crossover study design. With model
augmentation, clinicians’ sensitivity, accuracy, and interrater agreement significantly increased.
There was no statistical change in specificity and time to diagnosis.

Given the potential catastrophic outcome of a missed aneurysm at risk of rupture, an
automated detection tool that reliably detects and enhances clinicians’ performance is highly
desirable. Aneurysm rupture is fatal in 40% of patients and leads to irreversible neurological
disability in two-thirds of those who survive; therefore, an accurate and timely detection is of
paramount importance. In addition to significantly improving accuracy across clinicians while
interpreting CTA examinations, an automated aneurysm detection tool, such as the one presented in
this study, could also be used to prioritize workflow so that those examinations more likely to be
positive could receive timely expert review, potentially leading to a shorter time to treatment and
more favorable outcomes.

The significant variability among clinicians in the diagnosis of aneurysms has been well
documented and is typically attributed to lack of experience or subspecialty neuroradiology training,
complex neurovascular anatomy, or the labor-intensive nature of identifying aneurysms. Studies
have shown that interrater agreement of CTA-based aneurysm detection is highly variable, with
interrater reliability metrics ranging from 0.37 to 0.85,6,7,26-28 and performance levels that vary
depending on aneurysm size and individual radiologist experience.4,6 In addition to significantly
increasing sensitivity and accuracy, augmenting clinicians with the model also significantly improved
interrater reliability from 0.799 to 0.859. This implies that augmenting clinicians with varying levels
of experience and specialties with models could lead to more accurate and more consistent
radiological interpretations.

Currently, tools to improve clinician aneurysm detection on CTA include bone subtraction,29 as
well as 3-D rendering of intracranial vasculature,30-32 which rely on application of contrast threshold
settings to better delineate cerebral vasculature and create a 3-D–rendered reconstruction to assist
aneurysm detection. However, using these tools is labor- and time-intensive for clinicians; in some
institutions, this process is outsourced to a 3-D lab at additional costs. The tool developed in this
study, integrated directly in a standard DICOM viewer, produces a segmentation map on a new
examination in only a few seconds. If integrated into the standard workflow, this diagnostic tool
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could substantially decrease both cost and time to diagnosis, potentially leading to more efficient
treatment and more favorable patient outcomes.

Deep learning has recently shown success in various clinical image-based recognition tasks. In
particular, studies have shown strong performance of 2-D CNNs in detecting intracranial hemorrhage
and other acute brain findings, such as mass effect or skull fractures, on CT head examinations.33-36

Recently, one study10 examined the potential role for deep learning in magnetic resonance
angiogram–based detection of cerebral aneurysms, and another study37 showed that providing deep
learning model predictions to clinicians when interpreting knee magnetic resonance studies
increased specificity in detecting anterior cruciate ligament tears. To our knowledge, prior to this
study, deep learning had not been applied to CTA, which is the first-line imaging modality for
detecting cerebral aneurysms. Our results demonstrate that deep learning segmentation models
may produce dependable and interpretable predictions that augment clinicians and improve their
diagnostic performance. The model implemented and tested in this study significantly increased
sensitivity, accuracy, and interrater reliability of clinicians with varied experience and specialties in
detecting cerebral aneurysms using CTA.

Limitations
This study has limitations. First, because the study focused only on nonruptured aneurysms, model
performance on aneurysm detection after aneurysm rupture, lesion recurrence after coil or surgical
clipping, or aneurysms associated with arteriovenous malformations has not been investigated.
Second, since examinations containing surgical hardware or devices were excluded, model
performance in their presence is unknown. In a clinical environment, CTA is typically used to evaluate
for many types of vascular diseases, not just for aneurysm detection. Therefore, the high prevalence
of aneurysm in the test set and the clinician’s binary task could have introduced bias in interpretation.
Also, this study was performed on data from a single tertiary care academic institution and may not
reflect performance when applied to data from other institutions with different scanners and
imaging protocols, such as different slice thicknesses.

Conclusions

A deep learning model was developed to automatically detect clinically significant intracranial
aneurysms on CTA. We found that the augmentation significantly improved clinicians’ sensitivity,
accuracy, and interrater reliability. Future work should investigate the performance of this model
prospectively and in application of data from other institutions and hospitals.
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