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ABSTRACT
Background The embolization technique can have 
significant impact on the success of endovascular 
embolization.
Objective To evaluate the feasibility, embolization 
characteristics, and embolization extent with a newly 
developed extra-small micro-balloon catheter in an in 
vivo and in an in vitro embolization model in comparison 
with standard microcatheter embolizations.
Materials and methods Twenty-eight embolization 
procedures were performed in the porcine rete mirabile 
(RM) and in an in vitro embolization model, using either 
an extra-small (distal outer diameter 1.6 F) dual-lumen 
micro-balloon catheter or a standard microcatheter. 
Precipitating hydrophobic injectable liquid (PHIL) 
was used as embolic agent. Procedure times, number 
of injections, required volume of embolic agent, 
and embolization extent (percentage of embolized 
RM in postinterventional X-ray scans or number of 
filled sections of the in vitro model) were assessed. 
Histopathological analyses were performed.
Results Total procedure time was significantly shorter 
(in vivo: 123 s vs 615 s (medians), P=0.001; in vitro: 
180 s vs 496 s (medians), P=0.001), number of reflux 
events was significantly lower (in vivo: 0 vs 9 (medians), 
P=0.001; in vitro: 0 vs 3 (medians), P=0.001), and 
embolization extent was significantly higher (in vivo: 
96.9% vs 65.6% (medians), P=0.011; in vitro: 26 
vs 18 filled sections (medians); P=0.041) for the 
micro-balloon catheter groups. There was antegrade 
movement of the PHIL cast after balloon deflation in 
one in vitro embolization procedure and spontaneous 
balloon deflation with subsequent reflux in one in vivo 
embolization procedure.
Conclusion Extra-small dual-lumen micro-balloon 
catheters can improve endovascular embolization in 
comparison with standard microcatheter embolization.

INTRODUCTION
Endovascular embolization can play an important 
role in the treatment of arteriovenous malformations 
(AVMs), dural arteriovenous fistulas (dAVFs), and 
hypervascular tumors.1–6 The established standard 
embolization method is to inject an embolic agent 
slowly through a catheter until the specific emboli-
zation endpoint is reached—for example, complete 
filling of an AVM or stasis in the vasculature of a 
hypervascular tumor.5 7 At some point during the 
embolization procedure, reflux of embolic agent 

back along the catheter may occur.7 8 Reflux bears 
the risk of closing access before completion of 
the embolization procedure, catheter entrapment 
(mainly for liquid embolic agents (LEAs)), and 
unwanted embolization of non-target arteries, even-
tually leading to complications and/or to treatment 
failure.7–9 In the case of reflux, the embolization 
is usually paused for a certain period of time until 
hardening of the embolic agent (for LEAs) or until 
deeper penetration of the embolic agent into the 
vascularity (mainly for non-LEAs), thus increasing 
procedure and fluoroscopy time. When using LEAs, 
the formation of a plug around the catheter tip, 
consisting of hardened LEA, resulting after several 
small-volume injections of LEA with a certain 
amount of intended reflux, is often a prerequisite 
for effective penetration and complete emboliza-
tion.7 8 The treatment of cerebral AVMs represents 
a special challenge since feeding arteries of cerebral 
AVMs are often small and arteries supplying healthy 
brain tissue are often in close proximity, increasing 
the relevance of reflux.1 7 

Different approaches for controlling reflux during 
embolization have been proposed.10–12 One option 
is to use a catheter with a balloon situated proximal 
to the catheter tip with two lumina, one for balloon 
inflation and one for injection of the embolic agent, 
so-called dual-lumen balloon catheters.8 13 14 For the 
treatment of complex pathologies with small target 
vessels, the currently available balloon catheters can 
be too large for navigation into these vessels and/or 
the risk of damage to these vessels, caused by balloon 
inflation, can be too high.8 13–15

The aim of this study was to evaluate the feasibility, 
embolization characteristics, and embolization extent 
with a newly developed extra-small micro-balloon 
catheter (MBC) in an in vivo and in an in vitro embo-
lization model in comparison with standard microca-
theter (SMC) embolizations. The rationale of the in 
vivo studies was to evaluate the embolizations under 
conditions that are similar to the clinical setting; the 
rationale of the in vitro studies was an additional 
evaluation with a high level of standardization.

MATERIALS AND METHODS

IN VIVO EMBOLIZATION MODEL AND ANIMAL 
PROCEDURE
The rete mirabile (RM), a fine vascular network, 
located bilaterally at the cranial base of pigs, which 
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has been used as an endovascular embolization model by a 
number of investigators, was used as embolization model.16–20 
State Animal Care and Ethics Committee approval was obtained. 
Anesthesia, sacrifice (2 hours after intervention), and histopatho-
logical investigation were performed as described previously.20 
Sections were processed following routine protocols for hema-
toxylin and eosin and Elastica van Giesson staining. Histopatho-
logical evaluation was performed by AvD, who has 25 years of 
experience in neuropathology.

IN VITRO EMBOLIZATION MODEL
An in vitro endovascular embolization model was used according 
to the method of Vollherbst et al.21 The model, resembling an 
AVM, consisted of an afferent tube with a diameter of 2 mm, 
representing the feeding artery, supplying an artificial nidus: a 
round, flat, honeycomb-like three-dimensional space (subdi-
vided into 28 honeycomb-like sections) and two efferent tubes 
each with a diameter of 2 mm, representing two draining veins. 
The embolization model was integrated into a circuit system 
with a constant flow of sterile 0.9% (weight/volume) sodium 
chloride solution at a flow rate of 120 mL/min.

EMBOLIZATION TECHNIQUE
The microcatheter (MBC or SMC) was inserted coaxially 
through a guiding catheter. Subsequently, the catheter tip was 
positioned in the origin of the RM, defined as the first branching 
of the ascending pharyngeal artery (APA; in vivo) or in the 
origin of the artificial nidus (in vitro). After flushing the cath-
eter with 1 mL of dimethyl sulfoxide (DMSO), embolization was 
performed by manual and pulsatile injection under fluoroscopy 
guidance (Artis zee; Siemens, Forchheim, Germany) using 1 mL 
DMSO-compatible syringes.

Precipitating hydrophobic injectable liquid (PHIL; Micro-
Vention, Tustin, USA) was used as LEA. PHIL25, being the least 
viscous version, was used in order to achieve deep penetration 
and consequently maximal filling of the embolization models.

For each injection, a certain amount of reflux and distal embo-
lization was tolerated, defined as 5 mm distance of the APA (in 
vivo) or of the feeding artery or the draining veins (in vitro). In 
the case of embolization of the distal or medial portion of the 
RM with imminent embolization of the brain or of the contra-
lateral RM (in vivo) or in the case of reflux exceeding the limit 
of 5 mm (in vitro), the injection was stopped and paused for 60 s. 

In the case of complete embolization of the APA, embolization 
of the contralateral RM or the brain (in vivo) and in the case of 
reflux or draining vein embolization exceeding a limit of 15 mm 
(in vitro), the procedure was terminated prematurely.

All interventions were performed in the same way by two 
interventionalists (MAM and DFV) with 12 and 5 years of expe-
rience in endovascular therapies, respectively.

Balloon-assisted embolization
A newly developed DMSO-compatible dual-lumen MBC 
(MicroVention) was used. The design of the balloon and tech-
nical specifications are illustrated and described in figure 1. The 
MBC was used with a Traxcess 7 mini guidewire (MicroVen-
tion; outer diameter at distal tip: 0.007 in). To prevent damage 
to the balloon, the guidewire should not be advanced more 
than 5–6 cm distal to the tip of the MBC. Before insertion, the 
balloon-related catheter was flushed and filled with pure iodin-
ated contrast agent, and subsequently, deflated in saline. The 
balloon tip does not need to be steamed owing to a self-sealing 
technology (steaming will damage the balloon). After confirma-
tion of the adequate embolization position, the micro-balloon 
was slowly inflated with 0.02 mL pure iodinated contrast agent 
using a 0.25 mL syringe. According to the manufacturer’s infor-
mation, the relation of inflation volume to balloon diameter is 
as follows: 0.01 mL/1.4 mm, 0.02 mL/2.0 mm (nominal inflation 
volume and diameter), 0.03 mL/2.3 mm and 0.04 mL (maximum 
injection volume)/2.6 mm. One minute after embolization, the 
balloon was deflated and the catheter was removed under fluo-
roscopy. After removal, the distal parts of the catheters were 
inspected and photographed to observe adherent LEA.

Standard embolization technique
Standard embolization was performed using a standard 
DMSO-compatible 1.3 F microcatheter (Headway Duo; 
MicroVention).

STUDY GROUPS
In total, 28 embolization procedures were performed, 14 in the 
in vivo and 14 in the in vitro embolization model. Four study 
groups with seven embolization procedures per group were 
defined: group A (MBC, in vivo), group B (SMC, in vivo), group 
C (MBC, in vitro), and group D (SMC, in vitro). The results 
of four embolization procedures from group B (control group) 
were published previously with a different focus.20

STUDY GOALS
The aim of each embolization procedure was complete filling 
of the embolization model (the ipsilateral RM for the in vivo 
model). Total procedure time, median time per single injection, 
number of injections, and required volume of LEA for each 
procedure were measured. For the in vivo model, the number 
of events of reflux, embolization of the contralateral RM and 
of the distal portion of the RM was assessed. For the in vitro 
model, the number of events of reflux and draining vein embo-
lization was assessed. For determination of the embolization 
extent, in the in vivo model the area of the respective side of 
the RM in the preinterventional posteroanterior angiogram was 
determined and related to the embolized portion of the RM in 
the X-ray scan.17 20 In the in vitro model, the embolization extent 
was graded according to the number of filled honeycomb-like 
sections of the artificial nidus.21

Figure 1 Specifications, illustration, and photograph of the micro-
balloon catheter. A: working length, 165 cm; B: balloon length, 10 mm; 
C: distal tip, 2.5 mm; D: radiopaque marker bands; E: access to lumen 
for balloon inflation and deflation; F: access to working lumen (dead 
space: 0.44 mL). The catheter has an outer diameter of 2.8 F for the 
proximal shaft and 1.6 F for the distal tip, and an inner diameter of 
0.0155 inch for the proximal and 0.0095 inch for the distal inner lumen. 
The hydrophilic coated balloon has a nominal diameter of 2.0 mm when 
inflated with a volume of 0.02 mL.
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STATISTICS
Prism (version 7.02; GraphPad, La Jolla, USA) was used for data 
analysis. Quantitative data are presented as medians (lower quar-
tile; upper quartile). To evaluate statistical differences between 
the study groups the Mann-Whitney test was performed with a 
P value of 0.05 as the threshold for statistical significance.

RESULTS
All embolization procedures were performed as planned. In 
the in vivo model, the MBC could be easily navigated into the 
APA in all cases. In one in vivo embolization (group A), during 
embolization, there was minimal spontaneous deflation of the 
micro-balloon, leading to reflux of a small amount of LEA prox-
imal to the balloon. After re-inflation, the embolization proce-
dure could be continued without further complications. The 
remaining micro-balloons remained intact throughout all embo-
lization procedures with no evidence of spontaneous deflation. 
In one in vitro embolization (group C), after deflation of the 
micro-balloon, there was antegrade movement of the PHIL cast 
by approximately 5 mm into the venous portion of the model, 
resulting in secondary deterioration of the embolization extent. 
No further complications, such as catheter occlusion, catheter 

entrapment, movement of the micro-balloon during emboliza-
tion, or damage to the feeding artery, were observed. Inspection 
of the microcatheters showed no LEA on balloon surfaces or 
catheter tips.

Representative X-ray scans after embolization and an example 
of an analysis of the embolization extent are shown in figure 2 
and figure 3. Embolization characteristics and embolization 
extent are summarized in table 1. The total procedure time was 
significantly shorter, the number of injections was significantly 
lower, the median time per injection was significantly longer, 
and the embolization extent was significantly higher for groups 
A and C. The number of injection stops due to reflux (for both 
models) and the number of injection stops due to distal or 
venous embolization (in vitro only) were significantly lower for 
the MBC groups. The required volume of LEA was significantly 
lower for the MBC group in the in vivo model only. The number 
of injection stops due to embolization of the contralateral RM 
did not differ significantly. The spread of the data was lower for 
the MBC groups (eg, IQR of the embolization extent 10% for 
group A versus 32% for group B in the in vivo model).

Histopathological findings are shown and explained in 
figure 4. The size of the embolized blood vessels (80–400 µm) 
was similar for groups A and B. The vessels, especially the distal 
part of the RM, appeared more extensively filled in group A. 
However, no quantitative or qualitative analysis of the emboliza-
tion extent was performed in histopathology since preparation 
artifacts (dissolving of LEA during histopathological investiga-
tion) preclude a meaningful analysis.

DISCUSSION
In this study, balloon-assisted embolization and standard embo-
lization were compared in an experimental in vivo and in vitro 
embolization model. Several advantages of balloon-assisted 
embolization over standard embolization were demonstrated. 
The embolization extent (as a marker of therapeutic efficacy in 
the clinical setting) was significantly improved. Furthermore, 
balloon-assisted embolizations were more effective, with a 
smaller number of injections and longer injection times. Proce-
dure times were significantly shorter, an aspect which is highly 
relevant with respect to patient safety and the risk of compli-
cations.1–3 Also, the number of reflux events was significantly 
lower. As indicated above, every reflux event increases the risk 
of embolization of non-target arteries and of catheter entrap-
ment.7–9 The required volume of LEA was lower for the MBC 
group in the in vivo model, which can be explained by LEA 
inside the APA in the SMC group, caused by reflux. The lower 
spread of the data (embolization characteristics and extent) for 
the MBC groups indicates a higher grade of reproducibility for 
balloon-assisted embolization. The lack of extravasation of PHIL 
and of LEA-induced damage to the vessel wall (disintegration, 
major inflammation or necrosis) in this acute setting is a relevant 
safety issue and is in line with previous studies.20 22

Different dual-lumen balloon catheters are commercially 
available. In the majority of published studies, the Scepter C or 
Scepter XC (MicroVention) catheter was used for the treatment 
of AVMs or dAVFs.8 14 23 For these catheters, feasibility, safety 
and efficacy of balloon-assisted embolization were demonstrated 
with lower fluoroscopy and procedure times, more efficient 
injections, and better embolization control.8 14 23 Another small 
balloon catheter on the market is the Eclipse 2 L (Balt, Montmo-
rency, France). For this device, to the best of our knowledge, no 
data have been published on liquid embolization. To exemplify 
their size, these catheters have a distal tip outer diameter of 2.1 
F (Scepter C and XC) and 2.0 F (Eclipse 2 L). The difference 

Figure 2 Preinterventional diagnostic angiography of the rete 
mirabile and postinterventional X-ray scans with an example analysis 
of the embolization extent. (A) In preinterventional digital subtraction 
angiography, the respective side of the rete mirabile was delineated. 
(B) Postinterventional X scan. (C) After deflation and removal of the 
micro-balloon catheter, the embolized portion of the rete mirabile was 
delineated. In this example, the delineated area was 1.25 cm² in the 
preinterventional angiogram and 1.18 cm² in the postinterventional 
X-ray scan, resulting in an embolization extent of 94%.

Figure 3 Illustration of the in vitro embolization model with an 
example X-ray after balloon-assisted embolization. (A) Photograph 
of the in vitro embolization model. (B) X-ray scan of the embolization 
model, filled with pure iodinated contrast agent for definition of the 28 
honeycomb-like sections. (C) Example of an X-ray scan obtained after 
balloon-assisted embolization. Note the complete filling of the artificial 
nidus (28 of 28 filled sections) and the radiopaque markers of the 
deflated balloon in the afferent tube.
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in size (of the catheter and also of the balloon) from the MBC 
investigated in this study, which has a distal tip outer diameter 
of 1.6 F, is comparatively high and may be crucial in special 
situations. As initially indicated, even though these catheters are 
considered to be relatively small, they can be too big for navi-
gation into distal arteries, and inflation in these arteries may be 
too risky, especially in the treatment of complex cerebral AVMs 
and dAVFs with small feeding arteries and with a high risk of 
non-target embolization.8 14 15 In this context, extra-small dual-
lumen MBCs can be advantageous or can make even difficult-to-
treat or untreatable lesions treatable.

Despite the potential advantages of balloon-assisted emboliza-
tion, this procedure has a risk of complications, which are not 
encountered in standard embolizations. The number of balloon-re-
lated complications was small in reported studies.8 11 13–15 23 
Nonetheless, balloon-assisted embolization requires a high level 
of experience and expertise in neurointerventions and famil-
iarity with the device which is being used.

Minor reported complications include proximal movement of 
the inflated balloon caused by high injection pressures, spon-
taneous deflation of the balloon during embolization, catheter 
entrapment, and catheter fracturing.13 23 24 Two major compli-
cations of balloon-related damage to the feeding artery have 
been described. In treating 20 patients with AVMs, Spiotta et 
al reported one case of rupture of the feeding artery on balloon 
inflation.23 Jagadeesan et al reported rupture of an A3 segment 
of the anterior cerebral artery caused by inadvertent balloon 
overinflation, which led to an intracerebral hematoma with 
subsequent permanent neurological deficit.8 Another possible 
balloon-related complication is early distal embolization, 
bearing the risk of embolic strokes and of premature closing of 
draining veins, potentially leading to a sudden increase of the 
intranidal pressure with subsequent bleeding.11 25 In this exper-
imental study, distal embolization was not significantly more 
common when applying balloon assistance.

One case of spontaneous balloon deflation with subsequent 
reflux was observed in the in vivo setting of this experimental 
study. To prevent this complication, careful observation of the 
balloon during the embolization is mandatory. Furthermore, 
one case of distal migration of the LEA cast was observed in 
the in vitro setting, probably caused by incomplete precipita-
tion of the cast. Solidification of precipitating LEAs results after 
dissipation of DMSO out of the cast into the blood. This can 
be reduced by a slowed or arrested blood flow, which results 
after balloon occlusion. This phenomenon might be of particular 
relevance when there is only a single feeding artery, as was the 
case in our in vitro experiment. To prevent this complication, 
the waiting time before balloon deflation should be long enough 
(considering the specific precipitation time of the LEA which is 
being used) and after deflation the LEA cast should be carefully 
observed for stability.

Our study had some limitations. First, the navigability of the 
MBC was not specifically investigated. This aspect should be 
investigated in further experimental studies and in the clinical 
setting. Second, the number of experiments was relatively small; 
however, the findings were consistent in the different groups. 
Third, transferability of experimental models to clinical practice 
is generally limited. Fourth, the creation of an AVF might have 
made the in vivo model more similar to an AVM. Fifth, only 

Table 1 Embolization characteristics and embolization extent

Study groups
Group A 
(MBC, in vivo)

Group B 
(SMC, in vivo)

Group C 
(MBC, in vitro)

Group C 
(SMC, in vitro)

P value* 
A versus B/C versus D

Total procedure time (s) 123 (88; 159) 615 (483; 811) 180 (121; 243) 496 (348; 742) 0.001/0.001

Number of injections (n) 2 (2; 2) 9 (8; 12) 3 (2; 3) 7 (6; 11) 0.001/0.001

Median time per injection (s) 50 (33; 64) 8 (7; 12) 30 (26; 31) 9 (9; 19) 0.001/0.004

Volume of embolic agent (mL)† 0.1 (0.1; 0.2) 0.3 (0.3; 0.4) 0.1 (0.1; 0.2) 0.2 (0.1; 0.2) 0.022/0.274

Number of injection stops due to reflux (n) 0 (0; 2) 9 (8; 12) 0 (0; 0) 3 (3; 5) 0.001/0.001

Number of injection stops due to distal (in vivo) or venous (in 
vitro) embolization (n)

0 (0; 0) 0 (0; 0) 2 (2; 2) 3 (2; 6) 1.000/0.033

Number of injection stops due to embolization of the 
contralateral RM (in vivo only) (n)

0 (0; 2) 0 (0; 0) – – 0.192

Embolization extent‡ (%/n) 97 (89; 99) 66 (51; 83) 26 (24; 28) 18 (16; 22) 0.011/0.041
Data presented as median (lower quartile; upper quartile) 
*Mann-Whitney test
†Respecting the dead space of the microcatheters (0.44 mL for the MBC and 0.35 mL for the SMC)
‡For the in vivo setting, the embolization extent was determined using preinterventional angiography and postinterventional X-ray examination, for the in vitro setting, 
embolization extent was determined by counting the number of filled sections of the artificial nidus.
MBC, micro-balloon catheter; RM, rete mirabile; SMC, standard microcatheter.

Figure 4 Histopathological findings. Elastica van Giesson staining, 
12x magnification (right) and 40x magnification (left). Example shown 
for group A. Precipitating hydrophobic injectable liquid (PHIL) was 
identified as amorphous material of white appearance within the blood 
vessels of the rete mirabile (black asterisks), accompanied by fibrin and 
thrombus, which was localized within and adjacent to the PHIL cast. In 
this acute setting, no signs of damage to the internal elastic membrane 
(white asterisk), and no extravasation of liquid embolic agent, 
hemorrhage, necrosis, or signs of inflammation were observed.
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PHIL was used as LEA; other LEAs might have led to different 
results and should be tested in future studies.

CONCLUSIONS
Extra-small dual-lumen micro-balloon catheters can improve 
endovascular embolization in an in vivo and in vitro emboliza-
tion model in comparison with standard microcatheter embo-
lization. The specific features of balloon-assisted embolization 
have to be respected in order to prevent complications.
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