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Glioblastoma (GBM) is a common and the most malignant 
primary tumour in the brain and has a poor prognosis1,2. 
In addition to the difficulty of blood–brain barrier pen-

etration, intratumoural heterogeneity with high plasticity limits 
the effects of current therapies for GBM3,4. EGFR amplification or 
mutation occurs in ~50% of primary GBM and is an established 
oncogenic driver for GBM tumorigenesis1,5. However, efforts in tar-
geting EGFR in combination with standard care or other therapies 
have proven ineffective for GBM treatment6–8. Although heteroge-
neity of the EGFR signalling network may render therapy unsuc-
cessful5, other unidentified molecular modulators co-existing in 
EGFR-expressing tumours could contribute to GBM malignancy 
and therapy resistance.

Circular RNAs (circRNAs) are covalently closed RNA transcripts 
that are generally expressed at lower levels than their associated 
linear mRNAs9–11. However, certain circRNAs are highly enriched 
during neurogenesis12, which implies that circRNAs and their lin-
ear counterparts may have distinct functions. circRNAs have been 
demonstrated as translatable RNAs13. Open reading frames (ORFs) 
in translatable circRNAs may not have an in-frame stop codon, 
which results in multiple rounds of translation and the production 
of certain proteins14.

In this study, we sought to identify coding circRNAs in GBM and 
whether multiple rounds of circRNA translation generate proteins 
that could serve as potential targets for GBM.

Results
Circular E-cadherin RNA is selectively expressed in GBM. Since 
several circRNAs have been found to be enriched in tumours15,16, we 
determined differentially expressed circRNAs (DEcRs) in GBM by 
RNA sequencing (RNA-seq) analyses of GBM specimens and paired 
normal brain (NB) tissues from 12 patients17 (Fig. 1a, upper left). 
Among a total of identified 139,090 circRNAs, 21,535 have been 
annotated in circBase18 (Extended Data Fig. 1a). The majority of 
the circRNAs were less than 1,500-nucleotides long (Extended Data  
Fig. 1b). We identified nominally significant DEcRs between GBM 
and NB (Extended Data Fig. 1c (left) and 1d, and Supplementary 
Table 1). Of the identified 2,289 DEcRs, 1,305 were downregulated 
while 984 were upregulated when comparing circRNAs in GBM to 
that in NB (Extended Data Fig. 1c, right).

To discover translatable circRNAs, we performed ribosome pro-
filing of ten paired GBM and NB samples19 (Fig. 1a, upper right). 
We focused on the head-to-tail junction reads that were specific 
for translating circRNAs. We excluded mismatches and limited 
the minimum read-junction overlap to 9 nucleotides on either 
side. A candidate circRNA was called only when the unique junc-
tion reads were found in more than three samples and more than 
ten total junction reads were seen (Extended Data Fig. 1c and 
Supplementary Table 2). A total of 1,879 coding circRNAs were 
called, of which 1,109 were annotated in circBase and 4 circRNAs 
were recently described20 (Fig. 1a, lower left, and Extended Data  
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Fig. 1 | circ-E-Cad RNA is a potential coding circRNA and is overexpressed in GBM and GSCs. a, Upper: strategies used for circRNA-seq and ribosome 
profiling (Ribo-seq). A total of 12 pairs of GBM and NB samples were subjected to circRNA-seq, while 10 pairs of GBM and NB samples were subjected to 
ribosome profiling. Lower left: a Venn diagram of coding circRNAs and DEcRs intersecting in GBM or NB. Lower right: DEcRs annotated in circBase are labelled 
red, DEcRs are labelled purple, and DEcRs discovered by ribosome profiling in human heart20 and our data are labelled in green; RPFs, ribosome protected 
frames. b, Left: northern blot of circ-E-Cad RNA in GSCH2S using junction probes with or without RNase-R treatment. Two junction shRNAs were used to 
confirm specificity. Ctrl, control. Right: different shifting rates of circ-E-Cad RNA and its linear form were determined using a ssDNA matched to circ-E-Cad 
RNA that was treated with RNase-H (n = 3 independent experiments). c, Fluorescence in situ hybridization for circ-E-Cad RNA cellular localization in GSCH2S 
(H2S) cells (n = 3 independent experiments). Scale bar, 20 µm. d, Real-time qPCR of circular and linear E-cadherin (E-cad) RNA expression in iPSC-derived 
NSCs (IPS-NSC), primary human NSCs, GSCs and their paired non-GSCs. n = 3 independent experiments, data are presented as the mean ± s.d., two-sided 
t-test, ***P < 0.001. The P values for each group are listed in Supplementary Table 13. e, circ-E-Cad RNA expression in GBM and their paired NB samples. Cohort 
1: 107 randomly selected GBM and their NB samples from the Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University. Cohort 2: 
45 randomly selected GBMs and their paired NB from the Department of Neurosurgery, The Sun Yat-sen University Cancer Centre. Cohort 3: 45 randomly 
selected GBMs and their paired NB from the Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University. Data are presented as 
boxes containing the first and third quartiles. The whiskers indicate the maxima and minima. Wilcoxon test, ***P < 0.001. Source data are provided.
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Fig. 1e, left). When these coding circRNAs were cross-referenced 
to the DEcRs (Fig. 1a, lower left), 24 circRNAs were differentially 
translated between GBM and NB (Fig. 1a, lower right, and Extended 
Data Fig. 1e, right).

We validated the ten candidates annotated in circBase in paired 
GBM and NB. Among them, circular E-cadherin (circ-E-Cad) RNA 
was most differentially expressed (Extended Data Fig. 2a, upper). To 
exclude biases induced by nontumoural cells, we performed quan-
titative PCR (qPCR) in a panel of patient-derived glioma stem cells 
(GSCs), including GSC456, GSC4121, GSC3691, GSCH2S, GSC387 
(ref. 21), GSC17 and GSC23 (ref. 22), as well as neural stem cells 
(NSCs) and normal astrocytes (NHAs). The differential expres-
sion levels of circ-E-Cad RNA ranked at the top of these candidates 
(Extended Data Fig. 2a, lower).

Circularization of exons 7–10 forms the 733-nucleotide 
circ-E-Cad RNA (Extended Data Fig. 2b, upper). After the junc-
tion was confirmed (Extended Data Fig. 2b, lower), we found that 
circ-E-Cad RNA was resistant to RNase-R23, and two short hairpin 
RNAs (shRNAs) targeting the circular junction successfully reduced 
circ-E-Cad RNA levels (Fig. 1b, left and middle). When a comple-
mentary single-stranded DNA (ssDNA) was applied, circ-E-Cad 
RNA displayed a different shift rate compared with its linear 
form during RNase-H digestion24 (Fig. 1b, right). The circ-E-Cad 
RNA was localized in the cytoplasm (Fig. 1c), was upregulated in  
multiple CD133+ GSCs versus CD133− non-GSCs and was unde-
tectable in NSCs25 (Fig. 1d). In three independent cohorts of clinical  
samples, circ-E-Cad RNA levels were higher in GBM compared to  
NB (Fig. 1e).

circ-E-Cad RNA encodes a 254-amino-acid protein. circRNAs 
are reported to be translatable, and circRNA-encoded functional 
proteins have been described during GBM tumorigenesis17,26,27. 
circ-E-Cad RNA junction reads in ribosome profiling were detected 
in five out of ten GBM samples, whereas no junction reads were 
found in ten NB samples (Fig. 2a). We identified a potential internal 
ribosomal entry site (IRES) and validated its activity (Extended Data 
Fig. 2c). A cross-junction and multiple-round ORF driven by this 
IRES potentially encoded a 254-amino acid protein. We named this 
product as a circRNA-encoded E-cadherin (C-E-Cad). Due to the 
lack of a stop codon in the first-round read, C-E-Cad has a unique 
14-aa tail at its carboxy terminus formed by a natural frameshift 
in the second-round translation (Fig. 2b). We produced and char-
acterized a monoclonal antibody against the tail 14-aa sequences 
(Extended Data Fig. 2d). This antibody detected a specific protein at 
28 kDa in GSCH2S cells overexpressing circ-E-Cad RNA, as well as 
endogenous C-E-Cad in GSC387 cells (Fig. 2c). The 14-aa residues 
in C-E-Cad were further authenticated by mass spectrometry (MS) 
in these GSCs (Extended Data Fig. 2e).

These 14-aa residues displayed no homology to any known 
proteins. C-E-Cad was highly expressed in CD133+ GSCs com-
pared to CD133− non-GSCs and in GBM compared to NB  
(Fig. 2d and Extended Data Fig. 2f). In 107 primary GBM and 85 
NB tissues, C-E-Cad was detected in 90 out of 107 GBM (84.1%, 
Fig. 2e), whereas C-E-Cad was undetectable in all NB. Based on the 
quantification results, we divided the GBM into a C-E-Cad-high  
group and a C-E-Cad-low group. C-E-Cad expression inversely  
correlated with overall survival of patients with GBM (Fig. 2f,  
upper, and Extended Data Fig. 2g, left and middle), whereas  
there was no correlation of E-cadherin expression to GBM progno-
sis (Fig. 2f, lower, and Extended Data Fig. 2g, right). We examined 
whether C-E-Cad was co-expressed with SOX-2, an established 
marker for cell stemness28. Expression levels of C-E-Cad and 
circ-E-Cad RNA were positively correlated with that of SOX-2 in 
GBM (Fig. 2g).

C-E-Cad regulates the biological properties and tumorigenic-
ity of GSCs. We stably expressed circ-E-Cad RNA (or C-E-Cad 
ORF) in GSCH2S cells and stably knocked down circ-E-Cad RNA 
in GSC387 and GSC4121 cells. Knockdown (KD) of circ-E-cad 
reduced the expression levels of stemness markers and increased the 
levels of differentiation markers (Fig. 3a and Extended Data Fig. 3a). 
Conversely, overexpression of circ-E-Cad RNA or C-E-Cad ORF 
enhanced the stemness properties of the cells (Fig. 3a and Extended 
Data Fig. 3a). Functionally, sphere-forming frequency (Fig. 3b and 
Extended Data Fig. 3b, left), proliferation (Fig. 3c and Extended 
Data Fig. 3b, right), invasion (Fig. 3d and Extended Data Fig. 3c), 
anti-apoptosis and senescence resistance (Extended Data Fig. 3d,e) 
were reduced with KD of C-E-Cad in GSCs, whereas exogenous 
expression of C-E-Cad promoted the above phenotypes. In vivo, 
KD of C-E-Cad inhibited, while C-E-Cad expression enhanced, 
GSC intracranial tumour growth, which in turn altered the overall 
survival of animals bearing intracranial GSC xenografts (Fig. 3e,f 
and Extended Data Fig. 3f). Re-expression of a shRNA-resistant 
C-E-Cad (Extended Data Fig. 3g) restored the biological properties 
of cells in vitro and in vivo (Extended Data Fig. 3h–l). Additionally, 
expression of a mutated circ-E-Cad RNA (Extended Data Fig. 3g) 
failed to enhance these malignant phenotypes in vitro or in vivo 
(Extended Data Fig. 3h–l).

We identified symmetrical ALU sequences, which are criti-
cal for circRNA formation29,30, on both sides of exons 7–10 of the 
gene encoding E-cadherin (CDH1). Knockout (KO) of downstream 
ALU using CRISPR–Cas9 techniques impaired the formation of 
circ-E-Cad RNA and decreased C-E-Cad expression in GSC387 and 
GSC4121 cells (Extended Data Fig. 4a,b). ALU-KO GSCs showed 
diminished sphere-forming, which was similar to that observed 
with the stable KD of circ-E-Cad RNA. The impaired stemness 

Fig. 2 | circ-E-Cad RNA encodes a protein through multiple rounds of translation. a, Visualization of RFPs in the circ-E-Cad RNA junction. Five out of 10 
GBMs had a total of 18 junction reads, whereas no junction reads were found in 10 paired NB samples. b, Illustration of the C-E-Cad protein encoded 
by circ-E-Cad RNA. The C terminus of C-E-Cad is translated by the second-round read (showing in red). A monoclonal mouse antibody was generated 
against the indicated C-terminal sequences. c, The antibody against C-E-Cad was characterized in GSCH2S cells that stably overexpressed empty vector 
or circ-E-Cad RNA (left) and in GSC387 (387) cells (right). n = 3 independent experiments. d, Immunoblot (IB) of C-E-Cad and E-cadherin expression in 
NSCs, GSCs and their paired non-GSCs sorted by CD133 (left) and in 12 randomly selected GBM samples (T) (cohort 1) and their paired NB (N) samples 
(right). n = 3 independent experiments. e, Immunohistochemistry (IHC) images of C-E-Cad and E-cadherin expression in GBM and NB tissues (left) and 
semiquantitative scoring of C-E-Cad and E-cadherin expression in 85 NB and 107 GBM samples. Scale bar, 250 μm (cohort 1, right). Data are presented as 
boxes containing the first and third quartiles. The whiskers indicate the maxima and minima. Wilcoxon test, ***P < 0.001. f, Upper: Kaplan–Meier survival 
analysis of patients with GBM (cohort 1, n = 107 biologically independent samples) with C-E-Cad levels. Lower: two-sided, log-rank analysis of E-cadherin 
expression in GBM of The Cancer Genome Atlas (TCGA) dataset. g, Upper left: immunofluorescence (IF) images of C-E-Cad and SOX-2 expression in GBM. 
Scale bar, 100 µm (n = 3 independent experiments). Upper right: comparison of the percentages of C-E-Cad+ cells among SOX-2+ versus SOX-2− cells in 50 
randomly selected microscopy fields of each tumour image (cohort 1, n = 50 biologically independent samples). Data are presented as boxes containing the 
first and third quartiles. The whiskers indicate the maxima and minima. Wilcoxon test, ***P < 0.001. Lower left: IB of C-E-Cad and SOX-2 expression in eight 
randomly selected GBM samples and their paired NB (cohort 1, n = 3 independent experiments). Lower right: Pearson’s correlation between circ-E-Cad RNA 
and SOX2 mRNA expression in the 60 GBM sample cohort (cohort 1, n = 60 biologically independent samples). Source data are provided.
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properties of ALU-KO could be rescued by the re-expression of 
C-E-Cad (Extended Data Fig. 4c,d).

C-E-Cad activates STAT3, PI3K–AKT and MAPK–ERK signal-
ling in GSCs. To elucidate the mechanism of C-E-Cad in GBM, 

we analysed RNA-seq data from GSC4121 cells with stable KD of 
circ-E-Cad RNA and found that 9 out of the 39 altered pathways 
were related to STAT3. Additionally, PI3K–AKT and MAPK sig-
nalling ranked at the top of these pathways (Extended Data Fig. 4e  
and Supplementary Table 3). To determine whether C-E-Cad  
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participates in STAT3 activation, we analysed RNA-seq data from 
GSC387 and GSC4121 cells in which STAT3 was stably depleted. 
Gene sets directly regulated by STAT3 in GSC387 and GSC4121 
cells were obtained by cross-referencing the STAT3-regulated genes 
with the STAT3-binding genes31,32. A positive correlation between 
genes directly regulated by STAT3 and C-E-Cad expression was evi-
dent (Fig. 4a). Consistent with the knowledge that phosphorylation 
and nuclear translocation of STAT3 indicate STAT3 activation33, 
C-E-Cad regulated p-STAT3 levels and nuclear localization (Fig. 4b 
and Extended Data Fig. 4f,g). C-E-Cad also stimulated p-AKT and 
p-ERK1/2, which are critical for the survival and proliferation of 
GSCs34–36 (Fig. 4b and Extended Data Fig. 4f).

To determine whether C-E-Cad regulates the stemness proper-
ties of GSCs through STAT3, we re-expressed a constitutively acti-
vating (CA) STAT3 (T705E) in ALU-KO GSC387 and GSC4121 
cells. CA-STAT3 rescued the impaired sphere-forming ability of 
ALU-KO GSC387 and GSC4121 cells (Extended Data Fig. 4h). 
CA-STAT3 also induced the expression of mesenchymal mark-
ers and reduced the expression of epithelial markers in ALU-KO 
GSC387 and GSC4121. Additionally, a STAT3 inhibitor, WP1066, 
inhibited the C-E-Cad-induced the stemness properties of the cells 
(Extended Data Fig. 4i).

Soluble-cleaved E-cadherin can promote cancer progres-
sion37,38, and E-cadherin can regulate p-STAT3 in embryonic stem 
cells39. We generated CDH1 KOs in human NSCs and in GSC17 
and GSC23 cells using the CRISPR–Cas9 system and separately 
re-expressed C-E-Cad or E-cadherin. KO of CDH1 depleted both 
circ-E-Cad RNA and CDH1 mRNA (Extended Data Fig. 4j). Levels 
of p-STAT3 were markedly reduced in GSC17 and GSC23 CDH1 
KO cells, but were restored by C-E-Cad expression (Fig. 4c). 
Moreover, p-STAT3 was moderately reduced, whereas C-E-Cad 
expression elevated p-STAT3 in CDH1 KO NSCs (Extended Data 
Fig. 4k). In all the CDH1 KO cells, expression of E-cadherin had 
minimal effects on p-STAT3 abundance (Fig. 4c and Extended 
Data Fig. 4k). GSC17 and GSC23 CDH1 KO cells showed impair-
ments in stemness properties and brain tumorigenicity. These 
attenuated phenotypes were rescued by expression of C-E-Cad but 
not E-cadherin. CDH1 KO did not render any appreciable effects 
on the biological behaviours of NSCs, while expression of C-E-Cad 
enhanced the stemness properties of these NSCs (Fig. 4d–g and 
Extended Data Fig. 4l–n).

C-E-Cad is a secretory protein and activates EGFR. C-E-Cad 
was soluble and secreted out of cells (Fig. 5a,b). We then purified 
His-tagged C-E-Cad (rC-E-Cad) and found that rC-E-Cad, but 
not a rC-E-Cad mutant with deleted (Δ)14 aa, stimulates p-STAT3 
(Extended Data Fig. 5a,b), promoted sphere-forming, cell prolif-
eration, invasion, apoptosis resistance and senescence resistance of 
CDH1 KO cells. These stimulatory effects were diminished when 

a specific anti-C-E-Cad antibody was included (Fig. 5c–f and 
Extended Data Fig. 5b–d).

In GBM, receptor tyrosine kinases (RTKs) are frequently ampli-
fied40–42. We determined which RTKs were stimulated by C-E-Cad 
using MS and identified EGFR as a potential C-E-Cad binding part-
ner (Extended Data Fig. 5e and Supplementary Table 3). We next 
stably knocked down EGFR, PDGFRA, MET or IL6R in GSC387 and 
GSC4121 cells (Extended Data Fig. 5f) followed by treatments with 
rC-E-Cad43,44. Notably, circ-E-Cad RNA KD reduced interleukin-6 
(IL-6) secretion (Extended Data Fig. 5g). When compared to the 
controls, rC-E-Cad less effectively activated downstream signals 
in GSCs with separate KD of PDGFRA, MET or IL6R, but almost 
failed to activate p-STAT3, p-AKT and p-ERK1/2 in GSCs with 
EGFR KD, which suggests that EGFR-mediated C-E-Cad activation 
is necessary for these signalling events (Fig. 5g and Extended Data 
Fig. 5h, left). The less effectiveness of downstream signal activation 
by rC-E-Cad in GSCs with separate KD of PDGFRA, MET or IL6R 
may be due to a positive activation loop of EGFR signalling, such as 
EGFR–AKT–IL-6–IL-6R.

The RTK activity of EGFR is determined by the induced phos-
phorylation of several tyrosine (Y) residues in the C terminus45. We 
expressed EGFR wild-type (WT) or a Y1068A mutant in EGFR KD 
GSC387 and GSC4121 cells and then treated them with rC-E-Cad. 
EGFR depletion markedly reduced the levels of p-STAT3, p-AKT 
and p-ERK1/2 that were induced by C-E-Cad. WT EGFR, but not 
the Y1068A mutant, rescued the diminished levels of p-STAT3, 
p-AKT and p-ERK1/2 in the modified GSCs (Fig. 5h and Extended 
Data Fig. 5h, right). To determine whether C-E-Cad had an inde-
pendent role in EGFR activation, we expressed C-E-Cad in CD133− 
non-GSCs that are deficient in the expression of EGFR and C-E-Cad. 
C-E-Cad was unable to induce p-STAT3 or stimulate the stemness 
properties of CD133− non-GSCs. When C-E-Cad was co-expressed, 
appreciable levels of p-STAT3 and sphere-forming were induced in 
CD133− non-GSCs (Extended Data Fig. 5i,j).

The C terminus of C-E-Cad and the CR2 domain of EGFR medi-
ate their direct interaction. We next determined whether C-E-Cad 
is associated with EGFR. We found that both recombinant proteins 
interact with each other and that endogenous C-E-Cad associates 
with EGFR in GSCs (Fig. 6a). Additionally, C-E-Cad and EGFR 
were co-localized in cells (Fig. 6b). Then, we assessed whether the 
unique 14-aa residues at the C terminus of C-E-Cad mediate this 
association. C-E-Cad-Δ14aa was unable to interact and co-localize 
with EGFR (Fig. 6b,c, left, and Extended Data Fig. 5k). Compared 
to WT C-E-Cad, C-E-Cad-Δ14aa also failed to activate p-STAT3 
(Fig. 6c, right). Conversely, mutants that contain the CR2 domain 
of EGFR, but not other mutants46, were able to interact with the 
recombinant C-E-Cad, which suggests that C-E-Cad binds to the 
CR2 domain (Fig. 6d).

Fig. 3 | C-E-Cad maintains self-renewal and tumorigenicity of GSCs in vitro and in vivo. a, Left: IB of stemness and differentiation marker expression 
in GSC387 cells with stable circ-E-Cad RNA KD (referred as to Ctrl shR, shR-1 and shR-2, hereafter) and in GSCH2S with circ-E-Cad RNA or linearized 
C-E-Cad overexpression (direct overexpression of C-E-Cad-ORF) (referred as to Vector-1, circ-E-Cad, Vector-2, C-E-Cad ORF, hereafter). β-actin was used 
as a loading control. Right: qPCR of the above modified GSCs using junction primers specific for circ-E-Cad RNA. n = 3 independent experiments, two-sided 
t-test, ***P < 0.001. b, The stem cell frequency of LDA analysis of GSC387 and GCSH2S cells with the indicated modifications. n = 3 independent 
experiments, two-sided t-test, ***P < 0.001. c, Percentage of EdU+ GSC387 and GCSH2S cells with the indicated modifications in randomly selected 
microscopy fields at different time points. n = 3 independent experiments, two-sided t-test, ***P < 0.001. d, Brain slice invasion. Relative invasion depths 
of GSC387 and GCSH2S cells with the indicated modifications. n = 3 independent experiments, two-sided t-test, ***P < 0.001. e, Upper: representative 
BLI images of in vivo tumorigenicity assays using GSC387 cells with the indicated modifications. A total of 2,000 of each of the indicated cell types were 
intracranially injected into each mouse, five mice per group were used. Lower left: the tumour volume was determined by calculating the BLI fluorescence 
index. n = 5 animals, two-sided t-test, ***P < 0.001. Lower right: two-sided, log-rank analysis of mice intracranially implanted with GSC387 cells with 
indicated modifications, MST, middle survival time; ***P < 0.001. f, Upper: representative BLI images of in vivo tumorigenicity assays using GSCH2S 
cells with the indicated modifications. n = 5 animals, two-sided t-test, ***P < 0.001. Lower left: the tumour volume was determined by calculating the BLI 
fluorescence index. Lower right: two-sided, log-rank analysis of mice intracranially implanted with GSCH2S cells with the indicated modifications. MST, 
middle survival time; ***P < 0.001. In b–f, data are presented as the mean ± s.d. Source data are provided.
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We used the ClusPro server47 to perform molecular docking sim-
ulations of C-E-Cad to the CR2 domain. The Ramachandran plot 
indicated that the three-dimensional (3D) structure of the model 
was reasonable (Fig. 6e). Docking simulation revealed that residues 
in the unique C terminus of C-E-Cad were involved in binding to 

residues in the CR2 domain through salt bridge and hydrogen bond 
interactions (Fig. 6e and Extended Data Fig. 5l).

We performed surface plasmon resonance (SPR)48 analysis using 
a recombinant CR2 domain, WT C-E-Cad and C-E-Cad-Δ14aa. 
Recombinant C-E-Cad effectively bound to the recombinant CR2 
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Fig. 4 | C-E-Cad promotes the activation of STAT3, Pi3K–AKT and MAPK signalling in GSCs. a, Gene set enrichment analysis of the STAT3 directly 
regulated gene set in GSC387 and GSC4121 (4121) cells with stable circular CDH1 RNA KD (versus controls) conducted using RNA-seq data (nominal 
P value of 0; false-discovery rate q value of 0). b, IB of p-STAT3, p-AKT and p-ERK expression levels in GSC387 and GCSH2S with the indicated 
modifications. n = 3 independent experiments. c, IB of the p-STAT3, E-cadherin and C-E-Cad expression levels in GSC23 (23)-WT, GSC23-CDH1 KO, 
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**P = 0.002, ***P < 0.001. g, Left: in vivo tumorigenicity assay of GSC17 (WT, KO + Ctrl, KO + C-E-Cad ORF, KO + Linear E-cad). Right upper: tumour 
volumes as determined by the in vivo tumorigenicity assay and of mice bearing indicated GSC tumour xenografts (n = 5 animals). Data are presented as 
the mean ± s.d., two-sided t-test, ***P < 0.001. Right lower: two-sided, log-rank analysis of mice (n = 5 animals). Left: *P = 0.018, **P = 0.009, ***P < 0.001. 
Right: *P = 0.017, **P = 0.009, ***P < 0.001. NA, not applicable. Source data are provided.

NATuRE CELL BioLoGY | www.nature.com/naturecellbiology

http://www.nature.com/naturecellbiology


Articles NAtuRE CEll BIOlOGy

a

d

f

hg

e

b 387 H2S 17

W
T

CDH1 KO

+
ci

rc
-E

-C
ad

+
E

-c
ad

C-E-Cad 25

kDa

25Total protein

V
ec

to
r-

1

C-E-Cad

C-E-CadNC sh
IL6R

sh
EGFR

p-STAT3

STAT3

– + – + – + – +

– + + + + kDa
WT 1068A

387 shEGFR387

387

p-STAT3

STAT3

β-actin

EGFR (Ab3004)

Purified
C-E-Cad
200 ng ml–1

C-E-Cad
antibody
1 µM

Purified
C-E-Cad
200 ng ml–1

H2S

H2S

17 CDH1 KO

+IgG

+C-E-Cad

+C-E-Cad+antibody

c

shMET
shPDGFA

– +

p-ERK

AKT pan

ERK

1 2 3 4 5
0

20

40

60

80

***

Days

NS

P
er

ce
nt

ag
e 

of
 E

du
+
 c

el
l

1 2 3 4 5
0

20

40

60

80

100

***

Days
0

1

2

3

4

5
R

el
at

iv
e 

de
pt

h
***

*** ***

0

2

4

6

8

***

p-ERK

p-AKT T308

p-AKT S473

AKT pan

ERK

V
ec

to
r-

1

V
ec

to
r-

2

ci
rc

-E
-C

ad

C
-E

-C
ad

 O
R

F

β-actin

p-AKT T308

p-AKT S473

C
tr

l s
hR

N
A

sh
R

N
A

-2

+IgG

+C-E-Cad

+C-E-Cad+
antibody

H2S 17 CDH1 KO

H2S 17 CDH1 KO

17 CDH1 KO

+EGFR

+IgG

+C-E-Cad

+C-E-Cad+antibody

S
te

m
 c

el
l f

re
qu

en
cy

 (
%

)
0 0

10

10

5

15

25

20

2040

30

50

sh
R

N
A

-1

kDa

90

90

42

42

42

55

55

55

180

90

90

42

42

42

55

55

55

Fig. 5 | C-E-Cad is a secretory protein that activates STAT3 through EGFR. a, Live cell images of HEK293T cells transfected with C-E-Cad–RFP. The arrows 
indicate secretory C-E-Cad. n = 3 independent experiments. Scale bar, 20 µm. b, IB of concentrated supernatant from GSC387, GSCH2S and GSC17 cells with 
the indicated modifications. Coomassie blue staining of total proteins was used as a loading control. n = 3 independent experiments. c, Illustration of the purified 
C-E-Cad stimulation and antibody blocking strategy. d, The stem cell frequency of LDA of GSCH2S and GSC17 CDH1 KO cells treated with purified C-E-Cad 
(200 ng ml−1) or in combination with a neutralization antibody (1 μM, referred as to +IgG, +C-E-Cad, +C-E-Cad+antibody). n = 3 independent experiments, 
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recombinant C-E-Cad associates with EGFR in vitro. Right: C-E-Cad associates with EGFR in GSC387 and GSC4121 cells. n = 3 independent experiments. 
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illustrated on the left. n = 3 independent experiments. Source data are provided.
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Fig. 7 | C-E-Cad independently activates EGFR and EGFRviii. a, IB of p-STAT3, p-EGFR, STAT3 and EGFR expression in GSCH2S (upper) and GSC17 
CDH1 KO (lower) cells. b, IF of p-Y1068-EGFR and LAMP1 or RAB11 co-localization detected in GSCH2S cells treated with EGF or purified C-E-Cad at 
the indicated time points. Scale bar, 20 µm. c, p-Y1068-EGFR activation rate (left) and duration (right) in GSCH2S and GSC17 CDH1 KO cells. Data 
are presented as the mean ± s.d., two-sided t-test, ***P < 0.001. d, Upper: IF of the colocalization of Flag-tagged C-E-Cad and HA-tagged EGFRVIII in 
HEK293T cells. Scale bar, 20 µm. Lower: IP and IB of recombinant C-E-Cad associating with EGFRvIII in vitro (left) and C-E-Cad associating with EGFRvIII 
in GSC387 and GSC4121 cells (right). e, IB of p-STAT3, p-EGFR, STAT3 and EGFR expression in WT and CDH1 KO cells together with EGFR KO and EGFR 
WT or EGFRvIII re-expressed in GSC17 cells. Recombinant C-E-Cad treatment (200 ng ml−1) was added as indicated. f, IB of p-STAT3, p-EGFR, STAT3 
and EGFR expression in EGFR stably KD GSC387 cells with C-E-Cad stable KD and re-expression of EGFRvIII. g, IB of p-STAT3, p-EGFR, STAT3 and EGFR 
expression in WT and CDH1 KO together with EGFR WT and EGFR KO or EGFRvIII re-expressed GSC17 cells. The recombinant and synthetic C-E-Cad 
C-terminal 14-aa peptide or mutated peptide (200 ng ml−1) was added as indicated. In a–g, n = 3 independent experiments. Source data are provided.
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immobilized SPR chip, with a Kd of 2.548 × 10−6 M (Fig. 6f, left). 
C-E-Cad-Δ14aa displayed a markedly reduced ability (approxi-
mately tenfold reduction, Kd of 2.368 × 10−5 M) to interact with the 
recombinant CR2 (Fig. 6f, right). To further determine whether 
the C terminus of E-C-Cad is sufficient to stimulate EGFR signal-
ling, we treated GSCH2S and GSC17 CDH1 KO cells with several 
C-terminal peptide variants, which encompassed the sequences 
involved in the EGFR interaction (Fig. 6g, left). In both GSCs, the 
14-aa, 20-aa and 37-aa peptides, but not the 14-aa peptide mutant, 
induced p-EGFR and p-STAT3 (Fig. 6g, right). Furthermore, 
re-expression of C-E-Cad, but not C-E-Cad Δ14aa, rescued tumori-
genicity in vivo (Extended Data Fig. 5m–o).

C-E-Cad independently activates EGFR. Unlike C-E-Cad, EGF 
binds to the L1 and L3 domains of EGFR49. We treated GSCH2S and 
GSC17 CDH1 KO cells with EGF, recombinant C-E-Cad or both. 
C-E-Cad was sufficient to induce p-EGFR and p-STAT3 in both 
GSCs, while combined treatment of C-E-Cad and EGF displayed 
a synergistic effect (Fig. 7a, left). Importantly, C-E-Cad was able to 
induce a prolonged activation of p-EGFR compared to that by EGF 
(Fig. 7a, right).

Internalization followed by recycle and degradation of the 
ligand-bound EGFR negatively regulates the intensity and duration 
of EGFR activation50,51. Since C-E-Cad did not affect EGFR expres-
sion, we next investigated whether C-E-Cad affected EGFR inter-
nalization. C-E-Cad-associated EGFR stayed on the cell membrane 
for 45 min after stimulation, which suggests that C-E-Cad retains 
EGFR on the cell surface for a prolonged period of time (Fig. 7b and 
Extended Data Fig. 6a). rC-E-Cad was able to stimulate EGFR activ-
ity more than that caused by EGF, while the combined treatment 
further elevated EGFR activity (Fig. 7c).

EGFRvIII is frequently amplified and co-expressed with EGFR 
in GBM5. We found that EGFRvIII was co-localized with C-E-Cad 
in GSCs (Fig. 7d). Since EGFRvIII was detected in various GSCs 
(Extended Data Fig. 6b), we knocked out EGFR in GSC17 CDH1 KO 
cells and NSCs (Extended Data Fig. 6c–f) and re-expressed EGFR 
or EGFRvIII or both in these cells. KO of EGFR and CDH1 mark-
edly diminished p-STAT3. When these cells were cultured without 
EGF and C-E-Cad, Y1068 of EGFRvIII was not phosphorylated, and 
p-STAT3 levels were not elevated. C-E-Cad was able to stimulate 
p-EGFR and p-STAT3 in cells that only expressed EGFR or EGFRvIII. 
C-E-Cad displayed the strongest activation of p-EGFR and p-STAT3 
in cells that co-expressed EGFR and EGFRvIII (Fig. 7e; Extended 
Data Fig. 6g). In EGFRvIII-expressing GSCs with stable EGFR KD, 
similar results were observed (Fig. 7f and Extended Data Fig. 6h).  
The 14-aa peptide stimulated CDH1 + EGFR KO GSC17 cells and 
NSCs, in which EGFR or EGFRvIII or both were re-expressed. EGFR, 
EGFRvIII and the 14-aa peptide together exhibited the strongest  
activation of p-STAT3 (Fig. 7g and Extended Data Fig. 6i).

Targeting C-E-Cad enhances anti-EGFR therapy for inhibiting  
GSC tumorigenicity. In GBM, most of the C-E-Cad+ cells  
harboured activated STAT3 signalling (Fig. 8a and Extended Data  
Fig. 7a). In patients positive for p-EGFR, those positive for  
C-E-Cad had shorter overall survival compared with those who 
were C-E-Cad− (Fig. 8b,c).

EGFR-targeting treatments for GBM have been disappointing7,52. 
We found that monotreatment with nimotuzumab failed to inhibit 
C-E-Cad-induced p-STAT3 in GSCs. An anti-C-E-Cad antibody 
displayed a moderate impact on the reduction of p-STAT3 in GSCs 
(Extended Data Fig. 7b). A combination of nimotuzumab and an 
anti-C-E-Cad antibody exhibited a synergistic effect on p-STAT3 
inhibition and cell growth (Extended Data Fig. 7c), and this inhibi-
tion was also accomplished by robust KD of EGFR (Extended Data 
Fig. 7d,e). Lapatinib shows appreciable effects in EGFR mutated 
cancer cells53. Treatment with lapatinib or an anti-C-E-Cad par-
tially inhibited p-STAT3 and cell growth, whereas a combination 
treatment with both achieved maximal inhibitory effects (Extended 
Data Fig. 7f,g). A previously reported oncogenic EGFR mutant, 
G598V, with higher intrinsic activity54 rescued the inhibitory effects 
of anti-C-E-Cad; this result reinforces the notion that anti-C-E-Cad 
mainly blocks EGFR signalling (Extended Data Fig. 7h–j).

Next, we treated immunodeficient mice bearing GSC brain 
tumour xenografts with nimotuzumab and an anti-C-E-Cad anti-
body separately or in combination. When compared to the controls 
or nimotuzumab-treated animals, the anti-C-E-Cad antibody alone 
displayed an appreciable effect. Combination treatment with the 
anti-C-E-Cad antibody and nimotuzumab markedly suppressed 
the growth of GSC brain tumour xenografts and increased sur-
vival of the animals (Fig. 8d,f and Extended Data Fig. 8a,b). When 
these mice were treated with lapatinib and the anti-C-E-Cad anti-
body, separately or in combination, similar results were achieved 
(Extended Data Fig. 8c,d).

Discussion
circRNAs have been described as generally downregulated tran-
scripts in cancer15. However, a subset of circRNAs is also found 
upregulated in tumours, which indicates that circRNAs may be 
functionally diverse and that their clinical implications remain to be 
investigated15. In GBM, 468 circRNAs have been found to be over-
expressed, and the levels of 21 circRNAs are inversely correlated 
with that of their cognate linear mRNAs55. Our evidence suggests 
that circ-E-Cad RNA is an oncogenic circRNA and an indepen-
dent prognostic factor in GBM. Moreover, the upstream mecha-
nisms governing the equilibrium between E-cadherin mRNA and 
circ-E-Cad RNA in GBM warrants further investigation.

We described that circ-E-Cad RNA encodes a unique E-cadherin 
variant. This translation pattern has been described in viruses14 but 
not in mammalian cells. The C terminus provides an exceptional 

Fig. 8 | Clinical implications and applications of C-E-Cad. a, Left: IF of p-STAT3 and C-E-Cad in GBM specimens from cohort 1 (GBM1) and cohort 3 
(GBM2). Scale bar, 100 µm. Right: comparison of the percentages of C-E-Cad+ cells among p-STAT3+ cells in 50 randomly selected microscopy fields 
of each tumour image. n = 50 independent experiments. Data are presented as boxes containing the first and third quartiles. The whiskers indicate the 
maxima and minima. Wilcoxon test, ***P < 0.001. b, IF of GBM specimens classified via EGFR and C-E-Cad expression. n = 3 independent experiments. 
Scale bar, 100 μm. c, Two-sided, log-rank analysis of EGFR-expressing GBM stratified by both EGFR and C-E-Cad expression (upper, cohort 1, n = 62 
biologically independent samples; lower, cohort 3, n = 31 biologically independent samples). In cohort 1, the median patient survival of EGFR+/C-E-Cad+ 
GBM was 8 months, while that of EGFR+/C-E-Cad− GBM was 23 months. In cohort 3, the median patient survival of EGFR+/C-E-Cad+ GBM was 4 months, 
while that of EGFR+/C-E-Cad− GBM was 24 months, ***P < 0.001. d, BLI images of mice bearing GSC tumour xenografts (n = 10 animals) and IHC of 
p-EGFR (n = 3 animals) brain sections with tumour xenografts treated with different therapeutic strategies. Scale bar, 250 μm. e, The C-E-Cad antibody 
therapeutic strategy in an animal model. For anti-EGFR therapy, nimotuzumab (N_mab; 1 μg µl−1, 3 μl every 3 days) was used. The C-E-Cad antibody 
(1 μg µl−1, 3 μl every 3 days) was used alone or in combination with anti-EGFR therapy. The total intracranial injection volume was 3 µl at each time. 
n = 10 animals. Data are presented as the mean ± s.d., two-sided t-test, ***P < 0.001. f, Two-sided, log-rank analysis of mice treated with the indicated 
therapeutic strategies. n = 10 animals. The P values are shown in the table. g, Summary figure of the mechanism of circ-E-Cad. circ-E-Cad RNA (generated 
from exon 7–9 of CDH1) encodes C-E-Cad. C-E-Cad interacts with the CR2 domain of EGFR and activates downstream STAT3, AKT and ERK signalling, 
thus sustaining tumour growth and survival. Source data are provided.
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target for effective anticancer therapy. In a previous study16, cir-
cPOK and POKEMON were shown to have antithetical functions. 
However, antithetical proteins generated from circular/linear RNA 
of the same gene have not yet been described. We showed that 
alternative translation of the same gene results in distinct protein 
variants with antithetical functions and that a dysregulated equi-
librium between circular and linear variants profoundly affects 
tumorigenicity.

Finally, we identified C-E-Cad as a new ligand that activates 
the oncogenic EGFR signalling pathway by directly binding to and 
persistently activating EGFR signalling. Previous studies reported 
that a PTEN mutation mediated resistance to EGFR kinase inhibi-
tors56,57. A combination of an anti-C-E-Cad antibody and lapatinib 
repressed PTEN mutant GSC tumorigenicity in vivo, which high-
lights that anti-C-E-Cad treatments could enhance the efficiency 
of EGFR-targeting therapy. Although an optimized delivery system 
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and small-molecule inhibitors are attractive approaches to pursue, 
our findings hold particular promise for antibody development for 
innovative clinical translation due to the exclusive 14-aa sequence 
and expression pattern of C-E-Cad. We hope to develop clinical 
protocols of combinations of anti-C-E-Cad antibody and EGFR for 
treating recurrent GBMs with EGFR overexpression.
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Methods
Experimental model and subject details. Mice and animal housing. Athymic  
(Ncr nu/nu) female mice at 6–8 weeks of age were purchased from Nanjing 
University Farms. Five mice were grouped in each cage. All experiments using 
animals were conducted using approved protocols by the Institutional Animal 
Care and Use Committee at Sun Yat-sen University in accordance with US NIH 
and institutional guidelines. The study was compliant with all relevant ethical 
regulations regarding animal research.

Xenograft studies. Mice were randomly assigned to experimental groups for 
all the experiments. For the animal survival analysis, mice were intracranially 
injected with 2,000 GSCs prelabelled with Fluc in 5 μl PBS and maintained until 
pathological symptoms from tumour burden developed or 70 days after injection. 
Tumour volume was estimated by calculating the relative Fluc index.

For the intracranial tumour xenograft model treated with nimotuzumab or 
the anti-C-E-Cad antibody (using a microsyringe guided by stereotactic system), 
mice intracranially receiving GSCs were randomized into four groups: (1) IgG 
control (3 μl, 3 μg); (2) anti-C-E-Cad antibody (3 μl, 3 μg); (3) anti-EGFR antibody 
(nimotuzumab, 3 μl, 3 μg); and (4) nimotuzumab and anti-C-E-Cad antibody (3 μl, 
3 μg per antibody) co-administered at every injection point. For the combination 
of apatinib and the C-E-Cad antibody, the same dose as nimotuzumab was 
used. All mice were monitored every 3 days for the development of neurological 
symptoms due to tumour burden. The growth of intracranial GSC tumour 
xenografts was monitored using bioluminescence imaging (BLI) with an IVIS 
machine (PhotoSound PAFT/256). Mice were maintained until the development 
of neurological symptoms. For in vivo BLI assessments, mice were injected with 
luciferin, and the fluorescence intensity was determined. The BLI images were 
taken using a Xenogeny imaging system (PhotoSound PAFT/256).

Human GBM and paired adjacent specimen. Human GBM tumour tissues were 
obtained after confirmation by board-certified neuropathologists from the 
following surgical suites: the Department of Neurosurgery, The First Affiliated 
Hospital of Sun Yat-sen University; the Department of Neurosurgery, Sun Yat-sen 
University Cancer Centre; and the Department of Neurosurgery, First Affiliated 
Hospital of Nanjing Medical University. Informed and signed content were 
obtained from each patient, and the study was approved by the Ethics Institutional 
Review Boards of The First Affiliated Hospital of Sun Yat-sen University, the Sun 
Yat-sen University Cancer Centre, the First Affiliated Hospital of Nanjing Medical 
University and the Beijing Neurosurgical Institute, Capital University. The samples 
were de-identified before being subjected to the described experiments in this 
study. GBM samples enrolled from the CGGA (Chinese Glioma Genome Atlas) 
were from the Beijing Neurosurgical Institute, Capital University. The study was 
compliant with all relevant ethical regulations regarding research involving human 
participants.

Cell lines and cell culture. The GSC456, GSC4121, GSC387, GSC3691 and GSCH2S 
cells were gifts from the UCSD. The GSC17 and GSC23 cell lines were generated 
using standard procedures22. GSCs were cultured as glioma tumour spheres in 
DMEM/F12 medium supplemented with B27 supplement (Life Technologies), 
bFGF and EGF (20 ng ml−1 each). Induced pluripotent stem cell (iPSC)-derived 
NSCs were a gift from P. Xiang, Sun Yat-sen University. Human NSCs (primary) 
were obtained from Gibco (TM A15654) and cultured with StemPro NSC SFM 
(A10509-01) supplemented with 2 mM GlutaMAX-I supplement (35050), 6 U ml−1 
heparin (Sigma, H3149) and 200 μM ascorbic acid (Sigma, A8960). Human NHAs 
were obtained from Lonza/ThermoFisher. HEK293T cells (from The American 
Type Culture Collection) were cultured in DMEM with 10% fetal bovine serum.

Techniques. RNA-seq. Total RNA was extracted using a Trizol reagent kit 
(Invitrogen). After digestion, purification and reverse transcription, the segments 
were subjected to Illumina sequencing adapters. Candidate circRNAs were selected 
if the unique junction reads were more than 2. Reads per million mapped reads 
(RPKM) were applied to quantify circRNAs. circRNAs with a fold change of >2 
and P < 0.01 were identified as DEcRs. For linear RNA expression analysis, data 
were mapped to the reference genome using TopHat2 (v.2.1.1), then transcript 
abundance was quantified using the software RSEM (v.1.2.19).

Gene set enrichment analysis. For the correlation between C-E-Cad and STAT3, 
two treatments (a negative control and shC-E-Cad) were conducted in GSC387 
and GSC4121 cells in parallel. The intersection of STAT3-binding genes and 
STAT3 positively regulated genes were obtained from GSC387 and GSC4121 cells, 
respectively. These genes were considered as STAT3 directly regulated gene sets 
in GSC4121 or GSC387 cells. Gene set enrichment analysis was conducted using 
the parameters from signal2Noise to analyse the enrichment of STAT3 directly 
regulated gene sets in comparison to shC-E-Cad treatment versus the negative 
control.

Ribosomal profiling sequencing. The ribosomal profiling technique was carried out 
as previously described19. After obtaining ribosome footprints, ribosomal profiling 
libraries were constructed using a NEBNext Multiple Small RNA Library Prep 

set for Illumina (E7300S, E7300L). Briefly, adapters were added to both ends of 
ribosome frames (RFs), followed by reverse transcription and PCR amplification. 
The 140–160-bp sized PCR products were enriched to generate a complementary 
DNA library and sequenced using Illumina HiSeqTM X10.

Metagene analysis. Low-quality reads were filtered using FASTP19. The short 
reads alignment tool Bowtie2 was used for mapping reads to a ribosome RNA 
and transfer RNA database. The reads mapped to ribosome RNA and transfer 
RNA were removed. The retained reads from each sample were mapped to the 
reference genome using Bowtie2, with no mismatches allowed. To visualize the RFs 
surrounding the start and stop codons of metagenes, reads were counted at each 
position of each gene, then these counts were summed across all genes. Metagene 
plots were generated using R (https://www.r-project.org/), taking the read counts 
and the CDS (coding sequence) boundaries in the transcript coordinates as input.

Identification of junction ribosome sequencing reads on circRNA. circRNA data were 
download from the circBase database (http://www.circbase.org/). The ribosome 
sequencing reads from junction sites of circRNA were searched following the 
methods described58,59. The number of junction reads that indicated a translation 
signal was calculated for each circRNA.

Plasmid construction and transfection. The C-E-Cad ORF expression plasmid was 
generated by cloning the linearized full-length ORF of C-E-Cad. The circ-E-Cad 
expression plasmid was generated by cloning the sequence of exons 7–10 of CDH1 
using pCDH-CMV-MCS-EF1–GFP + Puro (SBI pCD513B-1). An additional 
circulation promoter sequence and an AG/GT splicing sequence were added 
83-bp upstream and 53-bp downstream. The C-E-Cad–RFP expression plasmid 
was generated by cloning the ORF fused to red fluorescent protein (RFP). Other 
plasmids were generated according to the key resource table (Suplementary 
Table 11). Plasmids were transfected using Lipofectamine 3000 (Thermo Fisher 
Scientific) according to the manufacturer’s protocol.

Lentiviral production and establishment of stable cell lines. Lentiviral vectors 
expressing circ-E-Cad, C-E-Cad ORF, shC-E-Cad, C-E-Cad–RFP, STAT3-
705E, EGFR-WT, EGFRvIII, EGFR-1068A or EGFR truncated mutations were 
co-transfected with the packaging vectors psPAX2 (Addgene) and pMD2G 
(Addgene) into HEK293T cells for lentivirus production using Lipofectamine 
3000 (Thermo Fisher Scientific) according to the manufacturer’s instructions. To 
establish stable cell lines, GSCs were transduced by using the above lentiviruses 
with polybrene (8 mg ml−1, Sigma). After incubating for 72 h, cells were selected 
with 2 mg ml−1 puromycin for 3 days.

CRISPR–Cas9-mediated gene KO. The target sequences of guide RNA (gRNA) 
were designed using the online tool at http://crispr.mit.edu/. To produce CRISPR 
lentivirus, HEK293T cells seeded in 100-mm plates were transfected with 10 μg 
lentiCRISPRv2 gRNA or lentiCRISPRv2 control59 (Addgene, plasmid 52961) 
plasmids, 5 μg psPAX2 and 2.5 μg PMD2G plasmids using Lipofectamine 2000 
according to the manufacturer’s instructions. After incubation for 48–72 h, the 
supernatants containing lentivirus were collected and used to infect GSCs for 4–6 h 
in the incubator. After 5 days of culture. KO stable cell lines were collected and 
characterized.

Limiting dilution assay. In vitro limiting dilution assays (LDAs) were performed 
according to a previously described protocol60. Glioma sphere-forming frequency was 
calculated using extreme LDA software (http://bioinf.wehi.edu.au/software/elda/).

Immunohistochemistry. As previously described61, all paraffin-embedded GBM 
tumour sections (8–10 µm thick) were deparaffinized and blocked. Primary 
antibodies were diluted in bovine serum albumin and applied overnight at 4 °C 
in a wet chamber. After incubation in secondary antibodies, diaminobenzidine 
reagent was added to these tumour sections, which were then counterstained with 
haematoxylin to visualize nuclei.

We quantitatively scored the tumour tissue sections according to the 
percentage of positive cells and staining intensity. The scores were multiplied to 
give a scoring range of 0–12, whereby 0–6 was considered low expression and 7–12 
was considered overexpression.

RNA fluorescence in situ hybridization. Cells were incubated at 37 °C in a solution 
containing 50% formamide, 2× SSC, 0.25 mg ml−1 Escherichia coli transfer RNA, 
0.25 mg ml−1 salmon sperm DNA (Life Technologies), 2.5 mg ml−1 BSA (Roche) 
and 125 nM fluorescently labelled junction probe (Generay). After 12 h, the cells 
were washed and mounted in ProLong Gold (Life Technologies) and incubated 
overnight at room temperature. Confocal microscopy imaging (Olympus FV100) 
was then performed.

Northern blotting. Approximately 20 μg of total RNA was extracted and separated 
by 1.2% agarose gel. After transfer to a membrane and fixed, specific probes were 
applied at 37 °C and washed with 0.1% SDS at room temperature. Data were 
analysed using Quantity One or Image Lab software (Bio-Rad).
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Reverse transcription and real-time PCR. Total RNA samples were extracted and 
reverse-transcribed. The resulting cDNA was then subjected to real-time PCR 
analysis with SYBR Select master mix (Thermo Fisher Scientific) in a StepOne Plus 
real time PCR system (Applied Biosystems). Results were normalized to the β-actin 
mRNA in each sample.

Dual-luciferase reporter system. The renilla luciferase (Rluc) and the firefly 
luciferase (Luc) sequences were amplified from a psicheck2 vector (Promega). The 
Rluc sequence was placed in front and the Luc sequence was placed in the back. 
The full-length sequences of Rluc and Luc were obtained by overlapping PCR, and 
the flank sequences were connected to pCDNA 3.1(+) vector using two restriction 
enzyme sites (NheI and XhoI). The potential IRES sequences of circ-E-Cad were 
amplified and inserted in the middle of Rluc and Luc using two restriction enzyme 
sites (KpnI and EcoRI) introduced by primers. The IRES of hepatitis C virus was 
applied as a positive control.

Immunoblotting. Equal loading of cell lysate and tissue lysate were added to each 
well of a 12% SDS–PAGE system. After electrophoresis, membrane transfer 
and blocking, membranes were incubated with indicated primary antibodies 
and secondary horseradish-peroxidase-tagged antibodies, and the signals were 
visualized by enhanced chemiluminescence.

Immunofluorescence. Cultured cells and GSCs were fixed with 4% formaldehyde 
(Fisher) for 10 min and then blocked with 5% BSA with 0.1% Triton X-100 in 
PBS for 30 min at room temperature. Immunostaining was performed using the 
appropriate primary and secondary antibodies. Nuclei were counterstained with 
4,6-diamidino-2-phenylindole (DAPI). Images were taken using an Olympus 
FV1000 microscope.

Signalling of human EGFR. To analyse ligand-induced EGFR activation, cells 
were washed with ice-cold binding buffer (10 mM HEPES, 150 mM NaCl, 1% 
BSA, pH 8.0) and stimulated with C-E-Cad and the control in this buffer for 
10 min on ice. Cells were quickly lysed in binding buffer containing 1% NP-40, 
1 mM phenylmethylsulfonyl fluoride, 1 mg ml−1 aprotinin, 1 mg ml−1 leupeptin, 
5 mM sodium orthovanadate with phosphatase inhibitor cocktail (Thermo 
Fisher Scientific), and lysis supernatants were subjected to immunoblotting with 
3 mg ml−1 anti-EGFR ab-10 (Lab Vision) and 1:500 diluted anti-phospho-tyrosine 
p-Y20 (Santa Cruz Biotechnology), with detection using a LI-COR Odyssey Fc 
instrument.

EGFR activation. Quantification of phosphorylated and total EGFR was  
performed using LI-COR Image Studio software. The ratio of these signal 
intensities (calculated as phosphorylated EGFR divided by total EGFR) at each 
ligand concentration was determined, and the background value from the 
unstimulated sample subtracted. Data are plotted as log[ligand] versus response 
using GraphPad Prism, from which the maximum response for each experiment 
was determined. Results for each concentration were then normalized by  
the maximum response for the relevant experiment, and values of mean 
response ± s.d. are plotted.

Liquid chromatography–MS/MS analysis. Total protein was collected and separated 
by 12% SDS gel, and the band at about 25 kDa was excised and subjected to 
digestion. The resulting peptide was analysed using a QExactive mass spectrometer 
coupled to a nano-LC (AdvanceLC). The acquired spectra were analysed using the 
SEQUEST HT algorithm.

Edu assay. For the 5-ethynyl-2′-deoxyuridine (Edu) assays, cells were co-cultured 
with an Edu-labelling reagent following the manfacturer’s protocol. Five fields of 
view were taken for each cell line. Images were taken using an Olympus FV1000 
microscope.

CCK-8 assay. Two hundred of the indicated cells were seeded into each well of 
a 96-well plate. The viability of cells was determined using a CCK-8 reagent 
(Dojindo) every 24 h by measuring the absorbance at 450 nm (BioTek) of different 
cell lines following the manufacturer’s instructions. Treatment conditions are 
described in each figure legend.

Live-cell imaging. HEK293T cells were transfected with RFP-tagged C-E-Cad. After 
transfection for 72 h, live cell images (red fluorescence and bright-field) were taken 
using an Olympus FV100 microscope.

Immunoprecipitation. HEK293T cells were transfected with different plasmids 
for 72 h. Cells were lysed in ice-cold lysis buffer (0.3% CHAPS, 10 mM β-glycerol 
phosphate, 10 mM pyrophosphate, 40 mM HEPES (pH 7.4), 2.5 mM MgCl2 
and EDTA-free protease inhibitor). The soluble fractions from cell lysates were 
immunoprecipitated using primary antibodies. Then, the mix was rotated 
overnight at 4 °C. Beads were added and incubated for 2 h at room temperate. 
Immunoprecipitates were washed three times with PBST and subjected to 
immunoblotting analyses.

Brain slice invasion assay. As previously described62,63, the indicated number  
of cells labelled with green fluorescent protein (GFP) were seeded into 
non-adherent dishes in medium containing 20% methylcellulose (Sigma, M7140). 
After 8 h of incubation, cells assembled as neurospheres or glioma tumour  
spheres. We collected the medium and separated the spheres and planted the 
spheres onto a fresh mouse brain slice. After incubating for 12 h, the depth  
of neurosphere invasion into the brain slice was measured. Five spheres were 
applied for each cell line. Images were taken using a confocal microscope 
(Olympus FV100).

SPR analysis. A BIAcore S200 instrument (GE Healthcare) was used to detect 
binding interactions using a direct-binding assay format. SPR equilibrium binding 
data, consisting of Req values from several concentration series, were analysed 
by fitting a simple 1:1 binding to yield Rmax and Kd values using BIAcore S200 
Evaluation software.

Molecular docking. The 3D structure of the EGFR protein was downloaded from 
RCSB Protein Data Bank (PDB ID: 4UV7). Protein–protein docking in ClusPro 
server4-8 (https://cluspro.org) was used for molecular-docking simulations of 
C-E-Cad and for predicting the binding affinity to EGFR. Molecular graphics were 
generated using PyMOL.

Statistics and reproducibility. Statistical analysis was carried out using Microsoft 
Excel 2013 and GraphPad Prism v.5.00 for Windows. Experimental data are 
represented as the average ± s.d. of a minimum of three biological replicates. Unless 
otherwise indicated, Student’s two-tailed unpaired t-test was used to determine 
statistical significance of in vitro experiments. Gehan–Breslow–Wilcoxon test or 
log-rank test was used to determine the statistical differences of the survival data. 
All statistical tests were two-sided, and a P value of less than 0.05 was considered 
statistically significant. For each experiment, data are representative of three 
replications, with similar results obtained.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The RNA-seq data that support the findings of this study have been deposited 
in the NCBI with the identifiers PRJNA525736, SRA714646 and PRJNA525736. 
The human GBM data were derived from the TCGA Research Network: http://
cancergenome.nih.gov/. The dataset derived from this resource that supports the 
findings of this study is available at http://gepia.cancer-pku.cn/detail.php?gene.  
The CGGA data were derived from the 301 dataset available at http://www.cgga.
org.cn/download.jsp. All other data supporting the findings of this study are 
available from the corresponding authors upon reasonable request. Source data  
are provided with this paper.
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Extended Data Fig. 2 | Expression of circ-E-cad RNA in GBM; identification of iRES in circ-E-cad RNA; characterization of the anti-C-E-cad antibody 
(Related to Fig. 2). a, qPCR of the relative expression levels of 10 differential protein-coding circRNAs GBM and normal tissues, n = 44 biologically 
independent samples, data were presented as boxes containing the first and third quartiles. The whiskers indicate the maxima and minima. Wilcoxon 
test, **p = 0.005, ***p < 0.001. In GSCs and NSC/NHA. Circ-E-cad RNA had lowest expression in normal brain tissues among all candidate circRNAs, 
n = 3 independent experiments, data were presented as the mean ± SD, two-sided t test, the p value was detailed in Source data. b, Upper, exons 7-10 
of E-cadherin formed circ-E-cad RNA. Lower left, RT-PCR of circular and linear E-cadherin RNA in GSC H2S with or without RNase R treatment.Lower 
right, Sanger sequencing. n = 3 independent experiments. c, Left, sketches of the strategy for circular RNA based IRES verification. Right, WT or different 
truncated IRES predicated in circ-E-cad RNA in circ-Rluc-IRES report vector as indicated. n = 3 independent experiments. data were presented as the mean 
± SD, two-sided t test, ***p < 0.001. d, Upper, left, a Coomassie blue-stained gel; right, anti-circ-E-Cad antibody validation by IB. BL peptide, blocking 
peptide with the 14a.a. peptide sequence. Lower, IHC. anti-circ-E-Cad antibody validation in a clinical GBM tumor sample. n = 3 independent experiments. 
scale bar, 250 μm e, MS/Mass-spectra identified C-E-cad unique 14a.a. peptide sequences in GSCH2S and 387. f, IB of C-E-Cad in 14 randomly selected 
GBM samples (cohort 2 and cohort 3) and their paired NB. n = 3 independent experiments. g, Two-sided, Log-rank analysis of GBM patients (n = 45 
biologically independent samples) from cohort 3 correlated with C-E-Cad levels (left); CGGA database with C-E-Cad levels (middle) and E-Cad levels 
(right).***p < 0.001.
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Extended Data Fig. 3 | C-E-cad, but not circ-E-cad RNA, promotes GSC self-renewal and survival. (Related to Fig. 3). a, IB of indicated proteins in 
GSC4121 with indicated modifications. b, LDA assay and percentage of EdU-positive of GSC4121. c, The relative invasion depth of GSC4121. d, The 
percentage of SA-β-Gal positive cells of GSC387, 4121, H2S with indicated modifications. e, IB of indicated proteins in GSC387, 4121, and H2S with 
indicated modifications. f, Upper, BLI images of in vivo tumorigenicity using GSC4121 with indicated modifications. Lower left, tumor volumes. Lower right, 
Two-sided, Log-rank analysis of mice intracranially implanted with GSC4121 with indicated modifications. g, Left, a shRNA-resistant linearized C-E-cad 
vector and a mutated circ-E-cad RNA vector. Right, an adenine was inserted after the ATG start codon. h, qPCR of relative circ-E-cad RNA level in GSC387, 
4121 and H2S with indicated modifications. i, IB of indicated proteins in GSC387 and 4121 with stable circ-E-cad RNA KD and re-expression of a linearized 
C-E-cad (resistant to junction shRNA), and in GSCH2S overexpressing a linearized C-E-Cad or a mutated circ-E-cad RNA (insertion A). j, LDA assay of 
GSC387 and 4121 with indicated modifications. k, Brain slice invasion of GSC387, 4121, and H2S with indicated modifications. l, Upper, tumor volumes 
of GSC387, 4121 and H2S with indicated modifications. Lower, Two-sided, Log-rank analysis of mice injected with GSC387, 4121 and H2S with indicated 
modifications, ***p < 0.001. In a-e,h-k, n = 3 independent experiments. In f,l, n = 5 biologically independent samples. In b-d,f,h-l, data was presented as 
mean ± SD. Two-sided t test, ***p < 0.001.
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Extended Data Fig. 4 | Flanking ALu sequences are required to form circ-E-cad RNA; C-E-Cad activates STAT3, AKT and ERK signalling and 
independent functions of C-E-cad and E-cadherin. (Related to Figs. 3 and 4). a, The illustration of side flanking ALU sequences of circ-E-cad RNA and the 
CRISPAR/Cas9 strategy for KO downstream ALU sequences b, qPCR of circ-E-cad RNA in ALU KO GSC387 and 4121 with indicated modifications. c, IB 
in ALU KO GSC387 and 4121 with indicated modifications and controls. d, LDA assay in GSC387 and 4121 with indicated modifications.e. KEGG pathway 
enrichment analysis of circ-E-cad RNA stable KD GSC4121. f, IB of GSC4121 with indicated modifications. g, IF. p-STAT3 localization was determined in 
C-E-cad stable KD GSC387 4121 and in a circ-E-cad RNA or a linearized C-E-cad-overexpressing GSCH2S. scale bar, 20μm. h, LDA assay in GSC387, 
4121 and GSCH2S with indicated modifications. i, IB in in GSC387, 4121 and GSCH2S with indicated modifications. j, Upper, Strategy of E-cadherin KO by 
CRISPAR/Cas9 system in GSC23, 17, and NSC. Lower, qPCR of Circ-E-Cad and E-Cadherin in GSC23, 17, and NSC with indicated modifications. k, IB in 
NSC-WT, NSC-E-Cadherin KO cells. Circ-E-Cad RNA or E-cadherin was re-expressed in the indicated cells. l, LDA assay, Edu assay and brain slice invasion 
assay in NSC cell lines with indicated modifications. m, The percentage of SA-β-Gal positive cells of GSC387, 4121, and H2S with indicated modifications. 
n, IB of senescence markers p16, p21 and apoptosis related Caspase3 and PARP of GSC387, 4121, and H2S with indicated modifications.In a-d, f-n, n = 3 
independent experiments. In b,d,h,j,l,m, data were shown as mean ± SD, two-sided t test,***p < 0.001.
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Extended Data Fig. 5 | See next page for caption.

NATuRE CELL BioLoGY | www.nature.com/naturecellbiology

http://www.nature.com/naturecellbiology


Articles NAtuRE CEll BIOlOGy

Extended Data Fig. 5 | Recombinant C-E-cad activates EGFR. (Related to Fig. 5). a, IB. rC-E-cad with different concentrations were used to treat 
indicated cells. EGF was used as a positive control. b, IB for GSCH2S and GSC17 with indicated modifications. c, The percentage of SA-β-Gal positive 
cells of GSCH2S and GSC17 E-cadherin KO with indicated modification. d, IB of GSCH2S and GSC17 E-cadherin KO with indicated modification. e, Mass 
spectrometry analysis identified EGFR peptide sequences that was pulled down by the anti-C-E-cad antibody. (IB for GSC387 and 4121 with indicated 
modifications were separately treated with or without rC-E-cad proteins.). g, ELISA of IL-6 level in GSC387 and 4121 with indicated modifications. h, IB. 
Left, GSC4121 with stable KD of EGFR, Met, PDGFRA, or IL6R and treated with or without rC-E-cad (200 ng/ml). Right. GSC4121 with stable EGFR KD 
were re-expressed with WT EGFR or EGFR with a Y1068A mutation, then treated with rC-E-cad. i, IB. non-GSC387 and 4121 were modified or treated 
as indicated. j, LDA assay for non-GSC387 and 4121 with indicated modification or treatments. k, IB. EGFR-HIS, GST-C-E-Cad and GST-C-E-Cad-△14aa 
was purified and GST pull down assay was applied. l, Docking analysis of C-E-cad and EGFR CR2 domain. m, Tumor volume in GSC387, 4121 and H2S 
with indicated modifications. n, Two-sided, Log-rank analysis of mice intracranially implanted with GSC387, 4121 and H2S with indicated modifications, 
***p < 0.001o. Tumor volumes and Two-sided, Log-rank analysis of mice bearing indicated GSC tumor xenografts with 5 mice per group. ***p < 0.001In  
a-k, n = 3 independent experiments. In m-o, n = 5 independent experiments. In c,g,j,m.o, data were shown as mean ± SD, two-sided t test,***p < 0.001.
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Extended Data Fig. 7 | Clinical implication of the anti-C-E-cad antibody in vitro. (Related to Fig. 8). a, IHC and IB. Representative C-E-cad and p-STAT3 
levels were determined in GBM samples by IHC (left) and IB (right). Scale bar, 250 µm. b, Left, IB of p-STAT3 in GSC387 and 4121 cells treated with 
purified C-E-Cad and Nimotuzumab (N_mab). Right, IB of p-STAT3 and p-EGFR in GSC387 4121 cells treated with Nimotuzumab (N_mab) and C-E-Cad 
antibody. c, Cell viability was detected in GSC387 and 4121 cells treated with Nimotuzumab (N_mab) and C-E-Cad antibody, ***p < 0.001. d, GSC387 and 
4121 cells treated with Nimotuzumab + C-E-Cad antibody or transfected with shRNAs targeting EGFR. The levels of p-STAT3 and p-EGFR were detected. 
e, Cell viability was detected in GSC387 and 4121 cells with indicated modifications, ***p < 0.001. f, IB of p-STAT3 and p-EGFR in GSC387 and 4121 cells 
treated with Laptinib and C-E-Cad antibody. g, Cell viability was detected in GSC387 4121 cells treated with Laptinib and C-E-Cad antibody, ***p < 0.001. 
h, IP-IB of indicated proteins. HEK293T cells were co-transfected with EGFR-WT/EGFR-G958V and C-E-Cad-HA, Cells were then harvested and subjected 
to IP assay. i, GSC387, 4121, and 17 were transfected with shRNAs targeting EGFR and re-expressed with EGFR-G958V. Cells were treated with or without 
C-E-Cad antibody. IB of p-EGFR was detected. j, Cell viability in GSC387,4121 and 17 cells described in (i). In 387,*p = 0.026,**p = 0.006,***p < 0.001,in 
4121, *p = 0.01,**p = 0.001,***p < 0.001,in 17, *p = 0.022,**p = 0.009,***p < 0.001.In a-j. n = 3 independent experiments. In c,e,g,j, data were shown as 
mean ± SD, two-sided t test.
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Extended Data Fig. 8 | Clinical implication of the anti-C-E-cad antibody in vivo. (Related to Fig. 8). a, In vivo tumorigenicity assay using GSC4121 treatment 
with Nimotuzumab (N_mab), anti-C-E-cad antibodies or in combination, (n = 10 animals). BLI images (Left) indicated brain BITC tumor xenografts. Right, IHC 
of p-EGFR expression in indicated GSC tumours, scale bar, 250μm (n = 3 animals). b, Left, Relative intensity of fluorescent index of BLI that indicate tumor 
growth of GSC4121 brain tumor xenografts in animals treated with Nimotuzumab (N_mab), anti-C-E-cad antibodies or in combination. Data were presented 
as mean ± SD, two-sided t test, ***p < 0.001. Middle, Two-sided, Log-rank analysis of mice treated with indicated therapeutic strategies. Right, P values were 
calculated, n = 10 animals. c, In vivo tumorigenicity assay using GSC387 and 4121 and treatment with Laptinib, anti-C-E-cad antibodies or in combination. 
BLI images at different time point, (n = 10 animals). d, Left: Relative intensity of fluorescent index of BLI that indicate tumor growth of GSC387 and 4121 brain 
tumor xenografts in animals treated with Laptinib (1 μg/μl, 3 μl), anti-C-E-cad antibodies or in combination, n = 10 animals. Data were presented as mean ± 
SD, two-sided t test, ***p < 0.001.Middle, Two-sided, Log-rank analysis of mice treated with indicated therapeutic strategies. Right, P values were calculated, 
(n = 10 animals).
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